@inbook{d55eb068eec2463e8cb38aaab9edc9bd,
title = "Simulation of a conventionally neutral boundary layer with two-equation URANS",
abstract = "Simulating conventionally neutral boundary layers (CNBLs) with the unsteady Reynolds-Averaged Navier-Stokes (URANS) technique is investigated in this paper using a modified two-equation linear eddy viscosity turbulence model. For CNBLs over a flat and uniform surface, as typically used as the inflow to wind farm simulations, the governing equations of URANS can be solved with a one-dimensional solver, which makes the simulation of a typical CNBL five to six orders of magnitude faster than with large-eddy simulation (LES) approaches. However, URANS on the other hand requires more modelling than LES, and its accuracy is heavily dependent on the turbulence model employed. Through a cross-code study of a CNBL case with data from five different LES codes, it is found that the length-scale limiter of the employed turbulence model should be removed to correctly predict the atmospheric boundary layer (ABL) height evolution and the qualitative shape of various atmospheric profiles. A parametric study of simulations with varying initial ABL height further demonstrates the prediction capabilities of URANS, although a comparison with LES data shows that modelling of turbulence anisotropy and near-surface turbulence could be improved.",
author = "M. Baungaard and {Van Der Laan}, {M. P.} and M. Kelly and Hodgson, {E. L.}",
year = "2024",
doi = "10.1088/1742-6596/2767/5/052013",
language = "English",
series = "Journal of Physics: Conference Series",
publisher = "IOP Publishing",
number = "5",
booktitle = "The Science of Making Torque from Wind (TORQUE 2024): Modeling and simulation technology",
address = "United Kingdom",
note = "The Science of Making Torque from Wind (TORQUE 2024), TORQUE 2024 ; Conference date: 29-05-2024 Through 31-05-2024",
}