Silicone passive equilibrium samplers as ‘chemometers’ in eels and sediments of a Swedish lake.

Annika Jahnke, Philipp Mayer, Michael S. McLachlan, Håkan Wickström, Dorothea Gilbert, Matthew MacLeod

Research output: Contribution to journalJournal articleResearchpeer-review

726 Downloads (Pure)

Abstract

Passive equilibrium samplers deployed in two or more media of a system and allowed to come to equilibrium can be viewed as ‘chemometers’ that reflect the difference in chemical activities of contaminants between the media. We applied silicone-based equilibrium samplers to measure relative chemical activities of seven ‘indicator’ polychlorinated biphenyls (PCBs) and hexachlorobenzene in eels and sediments from a Swedish lake. Chemical concentrations in eels and sediments were also measured using exhaustive extraction methods. Lipid-normalized concentrations in eels were higher than organic carbon-normalized concentrations in sediments, with biota–sediment accumulation factors (BSAFs) of five PCBs ranging from 2.7 to 12.7. In contrast, chemical activities of the same pollutants inferred by passive sampling were 3.5 to 31.3 times lower in eels than in sediments. The apparent contradiction between BSAFs and activity ratios is consistent with the sorptive capacity of lipids exceeding that of sediment organic carbon from this ecosystem by up to 50-fold. Factors that may contribute to the elevated activity in sediments are discussed, including slower response of sediments than water to reduced emissions, sediment diagenesis and sorption to phytoplankton. The ‘chemometer’ approach has the potential to become a powerful tool to study the thermodynamic controls on persistent organic chemicals in the environment and should be extended to other environmental compartments.
Original languageEnglish
JournalEnvironmental Science Processes & Impacts
Volume16
Pages (from-to)464-472
ISSN1464-0325
DOIs
Publication statusPublished - 2014

Fingerprint Dive into the research topics of 'Silicone passive equilibrium samplers as ‘chemometers’ in eels and sediments of a Swedish lake.'. Together they form a unique fingerprint.

Cite this