Significance of membrane bioreactor design on the biocatalytic performance of glucose oxidase and catalase: Free vs. immobilized enzyme systems

Sofie Thage Morthensen, Anne S. Meyer, Henning Jørgensen, Manuel Pinelo

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Membrane separation of xylose and glucose can be accomplished via oxidation of glucose to gluconic acid by enzymatic glucose oxidase catalysis. Oxygen for this reaction can be supplied via decomposition of hydrogen peroxide by enzymatic catalase catalysis. In order to maximize the biocatalytic productivity of glucose oxidase and catalase (gluconic acid yield per total amount of enzyme) the following system set-ups were compared: immobilization of glucose oxidase alone; co-immobilization of glucose oxidase and catalase; glucose oxidase and catalase free in the membrane bioreactor. Fouling-induced enzyme immobilization in the porous support of an ultrafiltration membrane was used as strategy for entrapment of glucose oxidase and catalase. The biocatalytic productivity of the membrane reactor was found to be highly related to the oxygen availability, which in turn depended on the reactor configuration, hydrogen peroxide concentration and catalase origin. When glucose oxidase and catalase (from Aspergillus niger) were free in the membrane bioreactor a total biocatalytic productivity of 122 mg gluconic acid/mg enzyme was obtained after five consecutive reaction cycles. The free enzymes showed superior performance compared to the immobilized systems as a result of limited substrate and product diffusion in the latter case.
Original languageEnglish
JournalBiochemical Engineering Journal
Volume117
Pages (from-to)41-47
ISSN1369-703X
DOIs
Publication statusPublished - 2017

Keywords

  • Biocatalytic productivity
  • Catalase
  • Fouling-induced enzyme immobilization
  • Glucose oxidase
  • Polydopamine

Fingerprint

Dive into the research topics of 'Significance of membrane bioreactor design on the biocatalytic performance of glucose oxidase and catalase: Free vs. immobilized enzyme systems'. Together they form a unique fingerprint.

Cite this