Projects per year
Abstract
This thesis is concerned with signal processing for improving the performance
of wireless communication receivers for well-established cellular networks such
as the GSM/EDGE and WCDMA/HSPA systems. The goal of doing so, is to
improve the end-user experience and/or provide a higher system capacity by
allowing an increased reuse of network resources.
To achieve this goal, one must first understand the nature of the problem and
an introduction is therefore provided. In addition, the concept of graph-based
models and approximations for wireless communications is introduced along
with various Belief Propagation (BP) methods for detecting the transmitted
information, including the Turbo principle.
Having established a framework for the research, various approximate detection
schemes are discussed. First, the general form of linear detection is presented
and it is argued that this may be preferable in connection with parameter estimation.
Next, a realistic framework for interference whitening is presented,
allowing flexibility in the selection of whether interference is accounted for via a
discrete or a Gaussian distribution. The approximate method of sphere detection
and decoding is outlined and various suggestions for improvements are presented.
In addition, methods for using generalized BP to perform approximate
joint detection and decoding in systems with convolutional codes are outlined.
One such method is a natural generalization of the traditional Turbo principle
and a generalized Turbo principle can therefore be established.
For realistic wireless communication scenarios, a multitude of parameters are
not known and must instead be estimated. A general variational Bayesian EM-algorithm
is therefore presented to provide such estimates. It generalizes previously known methods for communication systems by estimating parameter
densities instead of point-estimates and can therefore account for uncertainty in
the parameter estimates. Finally, an EM-algorithm for band-Toeplitz covariance
estimation is presented as such an estimate is desirable for noise and interference
whitening. Using simulations, the method is shown to be near-optimal in the
sense that it achieves the unbiased Cramer-Rao lower-bound for medium and
large sample-sizes.
Original language | English |
---|
Publication status | Published - Sep 2007 |
---|
Series | IMM-PHD-2007-175 |
---|
Fingerprint
Dive into the research topics of 'Signal Processing for Improved Wireless Receiver Performance'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Capacity Improvements in Cellular Systems
Christensen, L. P. B., Larsen, J., Højen-Sørensen, P., Winther, O., Fleury, B. H. & Højen-Sørensen, P.
Eksternt finansieret virksomhed
01/09/2003 → 03/09/2007
Project: PhD