Abstract
It is widely accepted today that probabilistic forecasts of wind power production constitute valuable information for both wind power producers and power system operators to economically exploit this form of renewable energy, while mitigating the potential adverse effects related to its variable and uncertain nature. In this paper, we propose a modeling framework for wind speed that is based on stochastic differential equations. We show that stochastic differential equations allow us to naturally capture the time dependence structure of wind speed prediction errors (from 1 up to 24 hours
ahead) and, most importantly, to derive point and quantile forecasts, predictive distributions, and time-path trajectories (also referred to as scenarios or ensemble forecasts), all by one single stochastic differential equation model characterized by a few parameters.
ahead) and, most importantly, to derive point and quantile forecasts, predictive distributions, and time-path trajectories (also referred to as scenarios or ensemble forecasts), all by one single stochastic differential equation model characterized by a few parameters.
Original language | English |
---|---|
Journal | International Journal of Forecasting |
Volume | 32 |
Issue number | 3 |
Pages (from-to) | 981-990 |
ISSN | 0169-2070 |
DOIs | |
Publication status | Published - 2016 |
Keywords
- Wind speed
- Probabilistic Forecasting
- Wind Power
- Stochastic Differential Equations