Projects per year
Abstract
Subparts of load carrying structures like airplane windows or doors must be isolated from distortions and hence structural optimization needs to take such shape preserving constraints into account. The paper extends the shape preserving topology optimization approach from simple linear load cases into geometrically nonlinear problems with practical significance. Based on an integrated deformation energy function, an improved warpage formulation is proposed to measure the geometrical distortion during large deformations. Structural complementary elastic work is assigned as the objective function. The average distortion calculated as the integrated deformation energy accumulated in the incremental loading process is accordingly constrained to obtain warpage control. In the numerical implementation, an energy interpolation scheme is utilized to alleviate numerical instability in low stiffness regions. An additional loading case avoids isolation phenomena. Optimization results show that shape preserving design is successfully implemented in geometrically nonlinear structures by effectively suppressing local warping deformations.
Original language | English |
---|---|
Journal | Structural and Multidisciplinary Optimization |
Volume | 59 |
Issue number | 4 |
Pages (from-to) | 1033–1051 |
ISSN | 1615-147X |
DOIs | |
Publication status | Published - 2019 |
Keywords
- Shape preserving design
- Topology optimization
- Geometrical nonlinearity
- Integrated deformation energy
Fingerprint
Dive into the research topics of 'Shape preserving design of geometrically nonlinear structures using topology optimization'. Together they form a unique fingerprint.Projects
- 1 Finished
-
InnoTop: InnoTop, Interactive, Non-Linear, High-Resolution Topology Optimization
Sigmund, O. (Project Coordinator), Petersen, M. L. (Project Manager), Carlberg, L. K. (Project Manager), Aage, N. (Project Participant), Andreasen, C. S. (Project Participant), Wang, F. (Project Participant), Bærentzen, J. A. (Project Participant) & Assentoft, D. (Project Manager)
01/09/2017 → 31/08/2024
Project: Research