Separation of xylose and glucose using an integrated membrane system for enzymatic cofactor regeneration and downstream purification

Mixtures of xylose, glucose and pyruvate were fed to a membrane bioreactor equipped with a charged NF membrane (NTR 7450). Value-added products were obtained in the reactor via enzymatic cofactor-dependent catalysis of glucose to gluconic acid and pyruvate to lactic acid, respectively. The initial cofactor (NADH) concentration could be decreased to 10% of the stoichiometric value (relative to glucose) without compromising process time and substrate conversion via i) efficient cofactor regeneration and ii) high retention of cofactor (R=0.98) in the membrane bioreactor. Furthermore, accumulation of xylose (R

General information
Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering, Center for BioProcess Engineering
Pages: 327-335
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Membrane Science
Volume: 523
ISSN (Print): 0376-7388
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 6.93 SJR 2.4 SNIP 1.91
Web of Science (2017): Impact factor 6.578
Web of Science (2017): Indexed yes
Original language: English
Keywords: Biorefinery products, Cofactor regeneration, Membrane bioreactor, Nanofiltration, Sugars
DOIs:
10.1016/j.memsci.2016.10.017
Source: FindIt
Source ID: 2347579968
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review