Sensitivity of GOCE gradients on Greenland mass variation and changes in ice topography

Matija Herceg, Carl Christian Tscherning, Joanna Fredenslund Levinsen

Research output: Contribution to journalJournal articleResearchpeer-review

253 Downloads (Pure)

Abstract

The Gravity field and steady state Ocean Circulation Explorer (GOCE) maps variations in the gravity field by observing second order derivatives (gradients) of the Earth gravitational potential. Flying in the low altitude of 255 km and having a spatially dense data distribution of short wavelengths of the gravity field, GOCE may be used to enhance the time varying gravity signal coming fromthe GRACE satellites. The GOCE gradients may potentially be used for the determination of residual masses in local regions. This can be done using Least-Squares Collocation (LSC) or the Reduced Point Mass (RPM) method. In this study, different gravity field solutions are calculated by the use of RPM, LSC and GOCE gradients, respectively. Gravity field time series are created and presented for the six consecutive months of GOCE gradient observations, data being acquired between November 2009 and June 2010. Corresponding gravity anomaly results are used for the calculation of ice mass changes by the use of theRPMmethod. The results are then compared with the computed topographic effect of the ice by the use of a modified topographic correction and the Gravsoft TC program. The maximal gravity changes at the ground predicted from GOCE gradients are between 2 and 4 mGal for the period considered. The gravity anomaly estimation error arising from the GOCE gradient data using only Tzz with an associated error of 20 mE is 11 mGal. This analysis shows the potential of using GOCE data for observations of ice mass changes although the GOCE dataset is limited to only six months. We expect four years of GOCE gradient observations to be available by mid-2014. This will increase the accuracy and spatial resolution of the GOCE measurements, which may lead to an accuracy necessary for observing ice mass changes.
Original languageEnglish
JournalJournal of Geodetic Science
Volume4
Issue number1
Pages (from-to)8-18
Number of pages11
ISSN2081-9919
DOIs
Publication statusPublished - 2014

Cite this