Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well

Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well

High-temperature aquifer thermal energy storage system usually shows higher performance than other borehole thermal energy storage systems. Although there is a limitation in the widespread use of the HT-ATES system because of several technical problems such as clogging, corrosion, etc., it is getting more attention as these issues are gradually alleviated. In this study, a sensitivity analysis of recovery efficiency in two cases of HT-ATES system with a single well is conducted to select key parameters. For a fractional factorial design used to choose input parameters with uniformity, the optimal Latin hypercube sampling with an enhanced stochastic evolutionary algorithm is considered. Then, the recovery efficiency is obtained using a computer model developed by COMSOL Multiphysics. With input and output variables, the surrogate modeling technique, namely the Gaussian-Kriging method with Smoothly Clopped Absolute Deviation Penalty, is utilized. Finally, the sensitivity analysis is performed based on the variation decomposition. According to the result of sensitivity analysis, the most important input variables are selected and confirmed to consider the interaction effects for each case and it is confirmed that key parameters vary with the experiment domain of hydraulic and thermal properties as well as the number of input variables.

General information
Publication status: Published
Organisations: Department of Civil Engineering, Korea Advanced Institute of Science and Technology
Contributors: Jeon, J., Lee, S., Pasquinelli, L., Fabricius, I. L.
Number of pages: 11
Pages: 1349-1359
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Energy
Volume: 90
ISSN (Print): 0360-5442
Ratings:
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.03 SJR 2.22 SNIP 2.024
Web of Science (2015): Indexed yes
Original language: English
Keywords: High-temperature aquifer thermal energy storage, Sensitivity analysis, Gaussian Kriging method, Computational experiment, Gassum formation
DOIs:
10.1016/j.energy.2015.06.079
Source: FindIt
Source-ID: 2279821052
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review