TY - JOUR
T1 - Selective Catalytic Reduction of NOx with NH3 on Cu-, Fe-, and Mn-Zeolites Prepared by Impregnation: Comparison of Activity and Hydrothermal Stability
AU - Putluru, Siva Sankar Reddy
AU - Schill, Leonhard
AU - Jensen, Anker Degn
AU - Fehrmann, Rasmus S. N.
PY - 2018
Y1 - 2018
N2 - Cu-, Fe-, and Mn-zeolite (SSZ-13, ZSM-5, and BEA) catalysts have been prepared by incipient wetness impregnation and characterized by N2 physisorption, H2-TPR, NH3-TPD, and XPS methods. Both metal and zeolite support influence the deNOx activity and hydrothermal stability. Cu-zeolites and Mn-zeolites showed medium temperature activity, and Fe zeolites showed high temperature activity. Among all the catalysts, Cu-SSZ-13 and Fe-BEA are the most promising hydrothermally resistant catalysts. Fresh and hydrothermally treated catalysts were further examined to investigate the acidic and redox properties and the zeolite surface composition. Increased total acidity after metal impregnation and loss of acidity due to hydrothermal treatment were observed in all the catalysts. Hydrothermal treatment resulted in migration of metal or in strong metal support interations, whereby changes in reduction patterns are observed.
AB - Cu-, Fe-, and Mn-zeolite (SSZ-13, ZSM-5, and BEA) catalysts have been prepared by incipient wetness impregnation and characterized by N2 physisorption, H2-TPR, NH3-TPD, and XPS methods. Both metal and zeolite support influence the deNOx activity and hydrothermal stability. Cu-zeolites and Mn-zeolites showed medium temperature activity, and Fe zeolites showed high temperature activity. Among all the catalysts, Cu-SSZ-13 and Fe-BEA are the most promising hydrothermally resistant catalysts. Fresh and hydrothermally treated catalysts were further examined to investigate the acidic and redox properties and the zeolite surface composition. Increased total acidity after metal impregnation and loss of acidity due to hydrothermal treatment were observed in all the catalysts. Hydrothermal treatment resulted in migration of metal or in strong metal support interations, whereby changes in reduction patterns are observed.
U2 - 10.1155/2018/8614747
DO - 10.1155/2018/8614747
M3 - Journal article
SN - 2090-9063
VL - 2018
JO - Journal of Chemistry
JF - Journal of Chemistry
M1 - 8614747
ER -