Second order guiding-center Vlasov–Maxwell equations

Jens Madsen

    Research output: Contribution to journalJournal articleResearchpeer-review


    Second order gyrogauge invariant guiding-center coordinates with strong E×B-flow are derived using the Lie transformation method. The corresponding Poisson bracket structure and equations of motion are obtained. From a variational principle the explicit Vlasov–Maxwell equations are derived including second order terms. The second order contributions contain the lowest order finite-Larmor-radius corrections to the electromagnetic field. Therefore, the model is capable of describing situations where strong E×B-flows and finite-Larmor-radius effects are mutually important.
    Original languageEnglish
    JournalPhysics of Plasmas
    Issue number8
    Pages (from-to)082107
    Publication statusPublished - 2010


    • Fusion energy

    Fingerprint Dive into the research topics of 'Second order guiding-center Vlasov–Maxwell equations'. Together they form a unique fingerprint.

    Cite this