Sea level adaptation decisions under uncertainty

Sea level rise has serious consequences for harbor infrastructure, storm drains and sewer systems, and many other issues. Adapting to sea level rise requires comparing different possible adaptation strategies, comparing the cost of different actions (including no action), and assessing where and at what point in time the chosen strategy should be implemented. All these decisions must be made under considerable uncertainty—in the amount of sea level rise, in the cost and prioritization of adaptation actions, and in the implications of no action. Here we develop two illustrative examples: for Bergen on Norway's west coast and for Esbjerg on the west coast of Denmark, to highlight how technical efforts to understand and quantify uncertainties in hydrologic projections can be coupled with concrete decision-problems framed by the needs of the end-users using statistical formulations. Different components of uncertainty are visualized. We demonstrate the value of uncertainties and show for example that failing to take uncertainty into account can result in the median-projected damage costs being an order of magnitude smaller.

General information
Publication status: Published
Organisations: Department of Management Engineering, Systems Analysis, Norwegian Computing Center, Centre for International Climate and Environmental Research, Wageningen University & Research
Corresponding author: Thorarinsdottir, T. L.
Contributors: Thorarinsdottir, T. L., Guttorp, P., Drews, M., Kaspersen, P. S., de Bruin, K.
Number of pages: 17
Pages: 8147-8163
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Water Resources Research
Volume: 53
Issue number: 10
ISSN (Print): 0043-1397
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.39 SJR 2.296 SNIP 1.555
Web of Science (2017): Impact factor 4.361
Web of Science (2017): Indexed yes
Original language: English
Keywords: climate change adaptation, light tough decision tool, sea level rise, uncertainty quantification
Electronic versions:
Thorarinsdottir_et_al-2017-Water_Resources_Research. Embargo ended: 08/04/2018
DOIs:
10.1002/2016WR020354
Source: Scopus
Source-ID: 85030649949
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review