Scaling relations for brittle fracture of entangled polystyrene melts and solutions in elongational flow

Manfred H. Wagner, Esmaeil Narimissa, Qian Huang

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

The criterion for brittle fracture of entangled polymer liquids [Wagner et al., J. Rheol. 62, 221-223 (2018)] is extended by including the effects of finite chain extensibility and polymer concentration. Crack initiation follows from rupture of primary C-C bonds, when the strain energy of entanglement segments reaches the energy of the covalent bond. Thermal fluctuations will concentrate the strain energy on one C-C bond of entanglement segments, leading to bond scission and rupture ofpolymer chains followed by crack initiation and fast crack growth. In start-up flows, entanglement segments characterized by long relaxation times, i.e., predominantly those in the middle of the polymer chain, will be the first to reach the critical strain energy and will fracture. Recent experimental data of Huang [Phys. Fluids 31, 083105 (2019)] of fracture of a monodisperse polystyrene meltand of several solutions of monodisperse polystyrenes dissolved in oligomeric styrene are in agreement with the scaling relations for critical Weissenberg number as well as Hencky strain and stressat fracture derived from this fracture criterion and the extended interchain pressure model [Narimissa, Huang, and Wagner, J. Rheol. 64, 95-110 (2020)].

Original languageEnglish
JournalJournal of Rheology
Volume65
Issue number3
Pages (from-to)311-324
ISSN0148-6055
DOIs
Publication statusPublished - 2021

Fingerprint Dive into the research topics of 'Scaling relations for brittle fracture of entangled polystyrene melts and solutions in elongational flow'. Together they form a unique fingerprint.

Cite this