Scale-up of enzymatic production of lactobionic acid using the rotary jet head system

Ling Hua, Mikkel Nordkvist, P. M. Nielsen, John Villadsen

Research output: Contribution to journalJournal articleResearchpeer-review


Enzymatic oxidation of lactose to lactobionic acid (LBA) by a carbohydrate oxidase from Microdochium nivale was studied in a pilot-scale batch reactor of 600 L working volume using a rotary jet head (RJH) for mixing and mass transfer (Nordkvist et al., 2003, Chem Eng Sci 58:3877-3890). Both lactose and whey permeate were used as substrate, air was used as oxygen source, and catalase was added to eliminate the byproduct hydrogen peroxide. More than 98% conversion to LBA was achieved. Neither enzyme deactivation nor enzyme inhibition was observed under the experimental conditions. The dissolved oxygen tension (DOT) was constant throughout the tank for a given set of operating conditions, indicating that liquid mixing was sufficiently good to avoid oxygen gradients in the tank. However; at a given oxygen tension measured in the tank, the specific rate of reaction found in the RJH system was somewhat higher than previously obtained in a 1 L mechanically stirred tank reactor (Nordkvist et al., 2007, in this issue, pp. 694-707). This can be ascribed to a higher pressure in the recirculation loop which is part of the RJH system. Compared to mechanically stirred systems, high values of the volumetric mass transfer coefficient, k(L)a, were obtained when lactose was used as substrate, especially at low values of the specific power input and the superficial gas velocity. k(L)a, was lower for experiments with whey permeate than with lactose due to addition of antifoam. The importance of mass transfer and of the saturation concentration of oxygen on the volumetric rate of reaction was demonstrated by simulations.
Original languageEnglish
JournalBiotechnology and Bioengineering (Print)
Issue number4
Pages (from-to)842-849
Publication statusPublished - 2007


Dive into the research topics of 'Scale-up of enzymatic production of lactobionic acid using the rotary jet head system'. Together they form a unique fingerprint.

Cite this