S-GNN: State-Dependent Graph Neural Networks for Functional Molecular Properties

Adem R. N. Aouichaoui, Alessandro Cogliati, Jens Abildskov, Gürkan Sin*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

Abstract


Original languageEnglish
Title of host publicationProceedings of the 33rd European Symposium on Computer Aided Process Engineering
EditorsAntonis Kokossis, Michael C. Georgiadis, Efstratios N. Pistikopoulos
Volume52
PublisherElsevier
Publication date2023
Pages575-581
ISBN (Print)978-0-443-23553-5, 978-0-443-15274-0
DOIs
Publication statusPublished - 2023
Event33rd European Symposium on Computer Aided Process Engineering - Athens, Greece
Duration: 18 Jun 202321 Jun 2023

Conference

Conference33rd European Symposium on Computer Aided Process Engineering
Country/TerritoryGreece
CityAthens
Period18/06/202321/06/2023
SeriesComputer Aided Chemical Engineering
Volume52
ISSN1570-7946

Keywords

  • Graph neural networks
  • Thermophysical properties
  • Molecules
  • QSPR

Cite this