TY - JOUR
T1 - Ruthenium-catalysed synthesis of 2- and 3-substituted quinolines from anilines and 1,3-diols
AU - Monrad, Rune Nygaard
AU - Madsen, Robert
PY - 2011
Y1 - 2011
N2 - A straightforward synthesis of substituted quinolines is described by cyclocondensation of anilines with 1,3-diols. The reaction proceeds in mesitylene solution with catalytic amounts of RuCl3·xH 2O, PBu3 and MgBr2·OEt2. The transformation does not require any stoichiometric additives and only produces water and dihydrogen as byproducts. Anilines containing methyl, methoxy and chloro substituents as well as naphthylamines were shown to participate in the heterocyclisation. In the 1,3-diol a substituent was allowed in the 1- or the 2-position giving rise to 2- and 3-substituted quinolines, respectively. The best results were obtained with 2-alkyl substituted 1,3-diols to afford 3-alkylquinolines. The mechanism is believed to involve dehydrogenation of the 1,3-diol to the 3-hydroxyaldehyde which eliminates water to the corresponding α,β-unsaturated aldehyde. The latter then reacts with anilines in a similar fashion as observed in the Doebner-von Miller quinoline synthesis. © 2011 The Royal Society of Chemistry.
AB - A straightforward synthesis of substituted quinolines is described by cyclocondensation of anilines with 1,3-diols. The reaction proceeds in mesitylene solution with catalytic amounts of RuCl3·xH 2O, PBu3 and MgBr2·OEt2. The transformation does not require any stoichiometric additives and only produces water and dihydrogen as byproducts. Anilines containing methyl, methoxy and chloro substituents as well as naphthylamines were shown to participate in the heterocyclisation. In the 1,3-diol a substituent was allowed in the 1- or the 2-position giving rise to 2- and 3-substituted quinolines, respectively. The best results were obtained with 2-alkyl substituted 1,3-diols to afford 3-alkylquinolines. The mechanism is believed to involve dehydrogenation of the 1,3-diol to the 3-hydroxyaldehyde which eliminates water to the corresponding α,β-unsaturated aldehyde. The latter then reacts with anilines in a similar fashion as observed in the Doebner-von Miller quinoline synthesis. © 2011 The Royal Society of Chemistry.
U2 - 10.1039/c0ob00676a
DO - 10.1039/c0ob00676a
M3 - Journal article
SN - 1477-0520
VL - 9
SP - 610
EP - 615
JO - Organic & Biomolecular Chemistry
JF - Organic & Biomolecular Chemistry
IS - 2
ER -