Rotational and spin viscosities of water: Application to nanofluidics

Jesper Søndergaard Hansen, Henrik Bruus, B.D. Todd, P.J. Daivis

    Research output: Contribution to journalJournal articleResearchpeer-review


    In this paper we evaluate the rotational viscosity and the two spin viscosities for liquid water using equilibrium molecular dynamics. Water is modeled via the flexible SPC/Fw model where the Coulomb interactions are calculated via the Wolf method which enables the long simulation times required. We find that the rotational viscosity is independent of the temperature in the range from 284 to 319 K. The two spin viscosities, on the other hand, decrease with increasing temperature and are found to be two orders of magnitude larger than that estimated by Bonthuis et al. [Phys. Rev. Lett. 103, 144503 (2009)] We apply the results from molecular dynamics simulations to the extended Navier-Stokes equations that include the coupling between intrinsic angular momentum and linear momentum. For a flow driven by an external field the coupling will reduce the flow rate significantly for nanoscale geometries. The coupling also enables conversion of rotational electrical energy into fluid linear momentum and we find that in order to obtain measurable flow rates the electrical field strength must be in the order of 0.1 MV m(-1) and rotate with a frequency of more than 100 MHz.
    Original languageEnglish
    JournalJournal of Chemical Physics
    Issue number14
    Publication statusPublished - 2010


    Dive into the research topics of 'Rotational and spin viscosities of water: Application to nanofluidics'. Together they form a unique fingerprint.

    Cite this