Role of surface residue 184 in the catalytic activity of NADH oxidase from Streptococcus pyogenes

Hui Gao, Manish Kumar Tiwari, Raushan Kumar Singh, Bong Hyun Sung, Sun Chang Kim, Jung-Kul Lee

Research output: Contribution to journalJournal articlepeer-review

Abstract

Nicotinamide adenine dinucleotide (NADH) oxidase from Streptococcus pyogenes (SpNox) is a flavoprotein harboring one molecule of noncovalently bound flavin adenine dinucleotide. It catalyzes the oxidation of NADH by reducing molecular O2 to H2O directly through a four-electron reduction. In this study, we selected the lysine residues on the surface of SpNox and mutated them into arginine residues to study the effect on the enzyme activity. A single-point mutation (K184R) at the surface of SpNox enhanced NADH oxidase activity by
approximately 50 % and improved thermostability with 46.6 % longer half life at 30 °C. Further insights into the function of residue K184 were obtained by substituting it with other nonpolar, polar, positively charged, and negatively charged residues. To elucidate the role of this residue, computer-assistedmolecular modeling and substrate docking were performed. The results demonstrate that even a single mutation at the surface of the enzyme induces changes in the interaction at the active site and affects the activity and stability. Additionally, the data also suggest that the K184R mutant can be used as an effective biocatalyst for NAD+ regeneration in L-rare sugar production
Original languageEnglish
JournalApplied Microbiology and Biotechnology
ISSN0175-7598
DOIs
Publication statusE-pub ahead of print - 2014
Externally publishedYes

Keywords

  • Catalytic efficiency
  • H2O-forming NADH oxidase
  • L-Rare sugar
  • Site-directedmutagenesis
  • NAD regeneration

Fingerprint

Dive into the research topics of 'Role of surface residue 184 in the catalytic activity of NADH oxidase from Streptococcus pyogenes'. Together they form a unique fingerprint.

Cite this