Robust microbubble tracking for super resolution imaging in ultrasound - DTU Orbit

(30/09/2019)

Robust microbubble tracking for super resolution imaging in ultrasound

Currently ultrasound resolution is limited by diffraction to approximately half the wavelength of the sound wave employed. In recent years, super resolution imaging techniques have overcome the diffraction limit through the localization and tracking of a sparse set of microbubbles through the vasculature. However, this has only been performed on fixated tissue, limiting its clinical application. This paper proposes a technique for making super resolution images on non-fixated tissue by first compensating for tissue movement and then tracking the individual microbubbles. The experiment is performed on the kidney of a anesthetized Sprague-Dawley rat by infusing SonoVue at 0.1× original concentration. The algorithm demonstrated in vivo that the motion compensation was capable of removing the movement caused by the mechanical ventilator. The results shows that microbubbles were localized with a higher precision, reducing the standard deviation of the super localizations from 22μm to 8 μm. The paper proves that the restriction of completely fixated tissue can be eliminated, when making super resolution imaging with microbubbles.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Biomedical Engineering, Department of Information Technology, Technical University of Denmark, Heriot-Watt University, University of Copenhagen
Contributors: Hansen, K. B., Villagomez Hoyos, C. A., Brasen, J. C., Diamantis, K., Sboros, V., Sorensen, C. M., Jensen, J. A.
Number of pages: 4
Publication date: 2016

Host publication information
Title of host publication: Proceedings of 2016 IEEE International Ultrasonics Symposium
Publisher: IEEE
ISBN (Print): 978-1-4673-9897-8
Keywords: Sonic and ultrasonic radiation (medical uses), Patient diagnostic methods and instrumentation, Sonic and ultrasonic radiation (biomedical imaging/measurement), Sonic and ultrasonic applications, Biology and medical computing, Computer vision and image processing techniques, biomedical ultrasonics, blood vessels, bubbles, image resolution, kidney, medical image processing, motion compensation, robust microbubble tracking, super resolution imaging, ultrasound imaging, sound wave, diffraction limit, vasculature, tissue movement, anesthetized Sprague-Dawley rat, SonoVue, mechanical ventilator, Tracking, Motion compensation, Image resolution, Kidney, Ultrasonic imaging, In vivo, Standards
Electronic versions:
07728793.pdf
DOIs:
10.1109/ULTSYM.2016.7728793
Source: FindIt
Source ID: 2348756416
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2016 › Research › peer-review