TY - CHAP
T1 - Risk, Uncertainty, and Ignorance in Engineering Systems Design
AU - Oehmen, Josef
AU - Kwakkel, Jan
PY - 2022
Y1 - 2022
N2 - Uncertainty is the third major perspective in understanding and designing engineering systems, along with complexity and human behaviour. Risk, a corollary of uncertainty, is understood as the effect of uncertainty on objectives. When designing engineering systems, you cannot not manage risk – even ignoring risk equates to a decision to accept it. Engineering systems are characterised by long life cycles, changing operational environments, and evolving stakeholder values, leading to a wide range of uncertainties in their design and operation. Productively engaging with this uncertainty is critical for successfully operating and especially (re-)designing engineering systems.This chapter provides an overview of managerial practices to address the three levels of increasing uncertainty in engineering systems design: from (1) managing risk, to (2) managing uncertainty, to (3) managing ignorance. We differentiate for each level of uncertainty between two levels of value diversity: (1) primarily commensurate values (i.e. agreement on core values by critical stakeholders) and (2) primarily incommensurate values (i.e. no agreement on core values). The managerial practices we discuss are “classic” risk management, public engagement, scenario planning, robust decision-making, resilience, and applying the precautionary principle. In addition, we briefly illuminate the actuality of management practices dealing with the different levels of uncertainty beyond explicit, formal processes, the understanding of managing uncertainty as both modelling and decision support practices and personal and organisational biases in the context of addressing uncertainty.
AB - Uncertainty is the third major perspective in understanding and designing engineering systems, along with complexity and human behaviour. Risk, a corollary of uncertainty, is understood as the effect of uncertainty on objectives. When designing engineering systems, you cannot not manage risk – even ignoring risk equates to a decision to accept it. Engineering systems are characterised by long life cycles, changing operational environments, and evolving stakeholder values, leading to a wide range of uncertainties in their design and operation. Productively engaging with this uncertainty is critical for successfully operating and especially (re-)designing engineering systems.This chapter provides an overview of managerial practices to address the three levels of increasing uncertainty in engineering systems design: from (1) managing risk, to (2) managing uncertainty, to (3) managing ignorance. We differentiate for each level of uncertainty between two levels of value diversity: (1) primarily commensurate values (i.e. agreement on core values by critical stakeholders) and (2) primarily incommensurate values (i.e. no agreement on core values). The managerial practices we discuss are “classic” risk management, public engagement, scenario planning, robust decision-making, resilience, and applying the precautionary principle. In addition, we briefly illuminate the actuality of management practices dealing with the different levels of uncertainty beyond explicit, formal processes, the understanding of managing uncertainty as both modelling and decision support practices and personal and organisational biases in the context of addressing uncertainty.
KW - Engineering systems
KW - Engineering systems design
KW - Resilience
KW - Risk management
KW - Robust decision-making
U2 - 10.1007/978-3-030-46054-9_10-1
DO - 10.1007/978-3-030-46054-9_10-1
M3 - Book chapter
SP - 287
EP - 317
BT - Handbook of Engineering Systems Design
A2 - Maier, A.
A2 - Oehmen, J.
A2 - Vermaas, P.E.
PB - Springer
ER -