Risk-averse optimization of disaster relief facility location and vehicle routing under stochastic demand

Shaopeng Zhong, Rong Cheng, Yu Jiang, Zhong Wang, Allan Larsen, Otto Anker Nielsen

Research output: Contribution to journalJournal articleResearchpeer-review

99 Downloads (Pure)


Disasters such as fires, earthquakes, and floods cause severe casualties and enormous economic losses. One effective method to reduce these losses is to construct a disaster relief network to deliver disaster supplies as quickly as possible. This method requires solutions to the following problems. 1) Given the established distribution centers, which center(s) should be open after a disaster? 2) Given a set of vehicles, how should these vehicles be assigned to each open distribution center? 3) How can the vehicles be routed from the open distribution center(s) to demand points as efficiently as possible? 4) How many supplies can be delivered to each demand point on the condition that the relief allocation plan is made a priority before the actual demands are realized? This study proposes a model for risk-averse optimization of disaster relief facility location and vehicle routing under stochastic demand that solves the four problems simultaneously. The novel contribution of this study is its presentation of a new model that includes conditional value at risk with regret (CVaR-R)—defined as the expected regret of worst-case scenarios—as a risk measure that considers both the reliability and unreliability aspects of demand variability in the disaster relief facility location and vehicle routing problem. Two objectives are proposed: the CVaR-R of the waiting time and the CVaR-R of the system cost. Due to the nonlinear capacity constraints for vehicles and distribution centers, the proposed problem is formulated as a bi-objective mixed-integer nonlinear programming model and is solved with a hybrid genetic algorithm that integrates a genetic algorithm to determine the satisfactory solution for each demand scenario and a non-dominated sorting genetic algorithm II (NSGA-II) to obtain the non-dominated Pareto solution that considers all demand scenarios. Moreover, the Nash bargaining solution is introduced to capture the decision-maker's interests of the two objectives. Numerical examples demonstrate the trade-off between the waiting time and system cost and the effects of various parameters, including the confidence level and distance parameter, on the solution. It is found that the Pareto solutions are distributed unevenly on the Pareto frontier due to the difference in the number of the distribution centers opened. The Pareto frontier and Nash bargaining solution change along with the confidence level and distance parameter, respectively.
Original languageEnglish
Article number102015
JournalTransportation Research Part E: Logistics and Transportation Review
Publication statusPublished - 2020


Dive into the research topics of 'Risk-averse optimization of disaster relief facility location and vehicle routing under stochastic demand'. Together they form a unique fingerprint.

Cite this