Abstract Sulfur oxides are a common source for the deactivation of Cu-exchanged CHA zeolite based catalysts used for NOx reduction in diesel exhausts by selective catalytic reduction with NH3 (NH3-SCR). Since water and possible formation of SO3 affect the deactivation of Cu-CHA catalysts, the deactivation in the presence of SO2 or a mixture of SO2 and SO3 was studied by measuring the SCR activity in wet and dry gas at 200 and 550 °C. The estimated S-content in the catalysts before and after 4 h regeneration at 550 °C in NO, NH3, O2 and H2O was related to the deactivation. The deactivation can be divided into two parts: a reversible deactivation that is restored by the regeneration treatment, and an irreversible part. The irreversible deactivation does not affect the activation energy for NH3-SCR and displays a 1:1 correlation with the S-content, consistent with deactivation by Cu-sulfate formation. The reversible deactivation results in a lower activation energy and a deactivation that is larger than expected from the S-content. The presence of SO3 at 200 °C leads to higher reversible and irreversible deactivation, but has no significant impact at 550 °C. Furthermore, the irreversible deactivation is always higher when exposed at 200 °C than at 550 °C, and in wet conditions, compared to a dry feed. The deactivation is predominantly reversible, making regeneration at 550 °C a realistic approach to handle S-poisoning in exhaust systems.

General information
Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering, CHEC Research Centre, University of Houston, Haldor Topsoe AS
Corresponding author: Janssens, T. V.
Contributors: Hammersheij, P. S., Jangjou, Y., Epling, W. S., Jensen, A. D., Janssens, T. V.
Pages: 38–45
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Applied Catalysis B: Environmental
Volume: 226
ISSN (Print): 0926-3373
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 13.86 SJR 3.753 SNIP 2.568
Web of Science (2018): Indexed yes
Original language: English
Keywords: NH3-SCR, Cu-CHA, Deactivation, Sulfur oxides, Regeneration
DOIs: 10.1016/j.apcatb.2017.12.018
Source: RIS
Source-ID: urn:E76957020D534CDA27F4841238B75AE6
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review