Anthropogenic impacts on marine habitats are a global problem, particularly in coastal areas. While boulder reefs in temperate waters hold high biomass and biodiversity, and may be unable to recover from anthropogenic stressors without restoration efforts, little is known about how to restore and conserve this important marine habitat. Limited knowledge is a serious impediment to projects aimed at restoring boulder reefs that have been degraded or removed by substrate extraction. In 2008, a boulder reef was restored in Kattegat, the transitional waters between the North Sea and the Baltic Sea, using differently sized boulders. The restored reef covered approximately 27,600 m² seafloor and included 100,712 tons of boulders added at depths ranging between 4 and 11 m. This paper describes methodology and lessons learned during the restoration project. Before the restoration, geological and geotechnical surveys confirmed that the sea bed could support added boulders, and high resolution bathymetric surveys provided input for the design of the reef, particularly for numerical modelling of the hydrographic and sediment transport conditions. Numerical modelling was used to derive hydrographic design conditions for boulder placements and further, to ensure that the restored reef would not affect the sea bed morphology and hydrographic conditions at a local harbour and at a protected habitat, both situated in the vicinity of the restoration area. Data on the physical structure of the restored boulder reef, collected in 2009, demonstrated that cavernous structures and shallow reef areas were restored. Moreover, data collected in 2012 confirmed the stability of the restored reef. Finally, results highlighted the importance of stakeholder mapping at the outset, appropriate timing of stakeholder involvement and ongoing consideration of stakeholder perceptions. Charting strategy and introducing a checklist for marine restoration projects, this paper outlines important considerations and methodology needed to ensure that restoration of temperate reef structures meet the objectives, without having undesirable effects on existing hydrographic and morphological conditions, including nearby coastal areas and protected marine habitats.