Residual liquefaction of seabed under standing waves - DTU Orbit (04/08/2019)

Residual liquefaction of seabed under standing waves
This paper presents the results of an experimental study of the seabed liquefaction beneath standing waves. Silt (with $d_{50} = 0.070$ mm) was used in the experiments. Two kinds of measurements were carried out: pore water pressure measurements and water surface elevation measurements. These measurements were synchronized with video recording of the liquefaction process from the side. The ranges of the various quantities in the experiments were wave height $H = 5.9$-12.0 cm, wave period $T = 1.09$ s, and water depth $h = 30$ cm. The experiments show that the seabed liquefaction under standing waves, although qualitatively similar, show features different from that caused by progressive waves. The pore water pressure builds up (or accumulated) in the areas around the node and subsequently spreads out toward the antinodes. The experimental results imply that this transport is caused by a diffusion mechanism with a diffusion coefficient equal to the coefficient of consolidation. The experiments further show that the number of waves to cause liquefaction at the nodal section appears to be equal to that experienced in progressive waves for the same wave height. © 2013 American Society of Civil Engineers.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Fluid Mechanics, Coastal and Maritime Engineering, Istanbul Technical University
Contributors: Kirca, V. O., Sumer, B. M., Fredsøe, J.
Pages: 489-501
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume: 139
Issue number: 6
ISSN (Print): 0733-950x
Ratings:
 BFI (2013): BFI-level 1
 Scopus rating (2013): CiteScore 1.29 SJR 0.681 SNIP 1.416
 Web of Science (2013): Impact factor 1.107
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
Original language: English
Keywords: Diffusion, Elastic waves, Experiments, Liquefaction, Pore pressure, Pressure distribution, Sand, Silt, Video recording, Waves, Soil liquefaction, Marine soils, Standing waves
DOIs:
 10.1061/(ASCE)WW.1943-5460.0000208

Bibliographical note
This study was partially funded by the Danish Council for Strategic Research through the research program "Seabed and Wind Farm Interaction" and the Seventh Framework Program of EU through the project "Innovative Multi-purpose offshore platforms: planning, design and operation, MERMAID."
Source: dtu
Source-ID: n:oai:DTIC-ART:compendex/424172610::33694
Research output: Contribution to journal › Journal article – Annual report year: 2013 › Research › peer-review