Replication of nanopits and nanopillars by roll-to-roll extrusion coating using a structured cooling roll

Research output: Contribution to journalJournal article – Annual report year: 2016Researchpeer-review

Standard

Replication of nanopits and nanopillars by roll-to-roll extrusion coating using a structured cooling roll. / Murthy, Swathi; Pranov, Henrik; Pedersen, Henrik Chresten; Taboryski, Rafael J.

In: Journal of Vacuum Science and Technology. Part B. Nanotechnology & Microelectronics, Vol. 34, No. 6, 06KM02, 2016.

Research output: Contribution to journalJournal article – Annual report year: 2016Researchpeer-review

Harvard

APA

CBE

MLA

Vancouver

Author

Bibtex

@article{a838d19b567d4e798fe9efe51f1c992b,
title = "Replication of nanopits and nanopillars by roll-to-roll extrusion coating using a structured cooling roll",
abstract = "This paper investigates a novel, very high throughput, roll-to-roll (R2R) process for nanostructuring of polymer foils, called R2R extrusion coating. It has the potential to accelerate the integration of nanostructured materials in consumer products for a variety of applications, including optical, technical, and functional surfaces and devices. In roll-to-roll extrusion coating, a molten polymer film is extruded through a flat die forming a melt curtain, and then laminated onto a carrier foil. The lamination occurs as the melt curtain is pressed between a cooling roller and a counter roller. By mounting a nanostructured metal shim on the surface of the cooling roller, the relief structure from the shim can be replicated onto a thermoplastic foil. Among the benefits of P oil, the process are availability of a wide range of commercial extruders, off-the-shelf extrusion grade polymers, functional additives, polymeric materials with good diffusion barrier properties, and the overall maturity of the technology [S. H. Ahn and L. J. Guo, Adv. Mater. 20, 2044 (2008)]. In this article, the authors demonstrate replication of nanopits and nanopillars with diameters between 40 and 120 nm and depth/height of 100 nm. The best replication was achieved in polypropylene, by running at high roller line-speed of 60 m/min, and high cooling roller temperature of 70°C. Replication in other common polymers like polyethylene and polystyrene was not possible for the parameter range used for the investigation.",
author = "Swathi Murthy and Henrik Pranov and Pedersen, {Henrik Chresten} and Taboryski, {Rafael J.}",
year = "2016",
doi = "10.1116/1.4967217",
language = "English",
volume = "34",
journal = "Journal of Vacuum Science and Technology. Part B. Microelectronics and Nanometer Structures",
issn = "1071-1023",
publisher = "American Institute of Physics",
number = "6",

}

RIS

TY - JOUR

T1 - Replication of nanopits and nanopillars by roll-to-roll extrusion coating using a structured cooling roll

AU - Murthy, Swathi

AU - Pranov, Henrik

AU - Pedersen, Henrik Chresten

AU - Taboryski, Rafael J.

PY - 2016

Y1 - 2016

N2 - This paper investigates a novel, very high throughput, roll-to-roll (R2R) process for nanostructuring of polymer foils, called R2R extrusion coating. It has the potential to accelerate the integration of nanostructured materials in consumer products for a variety of applications, including optical, technical, and functional surfaces and devices. In roll-to-roll extrusion coating, a molten polymer film is extruded through a flat die forming a melt curtain, and then laminated onto a carrier foil. The lamination occurs as the melt curtain is pressed between a cooling roller and a counter roller. By mounting a nanostructured metal shim on the surface of the cooling roller, the relief structure from the shim can be replicated onto a thermoplastic foil. Among the benefits of P oil, the process are availability of a wide range of commercial extruders, off-the-shelf extrusion grade polymers, functional additives, polymeric materials with good diffusion barrier properties, and the overall maturity of the technology [S. H. Ahn and L. J. Guo, Adv. Mater. 20, 2044 (2008)]. In this article, the authors demonstrate replication of nanopits and nanopillars with diameters between 40 and 120 nm and depth/height of 100 nm. The best replication was achieved in polypropylene, by running at high roller line-speed of 60 m/min, and high cooling roller temperature of 70°C. Replication in other common polymers like polyethylene and polystyrene was not possible for the parameter range used for the investigation.

AB - This paper investigates a novel, very high throughput, roll-to-roll (R2R) process for nanostructuring of polymer foils, called R2R extrusion coating. It has the potential to accelerate the integration of nanostructured materials in consumer products for a variety of applications, including optical, technical, and functional surfaces and devices. In roll-to-roll extrusion coating, a molten polymer film is extruded through a flat die forming a melt curtain, and then laminated onto a carrier foil. The lamination occurs as the melt curtain is pressed between a cooling roller and a counter roller. By mounting a nanostructured metal shim on the surface of the cooling roller, the relief structure from the shim can be replicated onto a thermoplastic foil. Among the benefits of P oil, the process are availability of a wide range of commercial extruders, off-the-shelf extrusion grade polymers, functional additives, polymeric materials with good diffusion barrier properties, and the overall maturity of the technology [S. H. Ahn and L. J. Guo, Adv. Mater. 20, 2044 (2008)]. In this article, the authors demonstrate replication of nanopits and nanopillars with diameters between 40 and 120 nm and depth/height of 100 nm. The best replication was achieved in polypropylene, by running at high roller line-speed of 60 m/min, and high cooling roller temperature of 70°C. Replication in other common polymers like polyethylene and polystyrene was not possible for the parameter range used for the investigation.

U2 - 10.1116/1.4967217

DO - 10.1116/1.4967217

M3 - Journal article

VL - 34

JO - Journal of Vacuum Science and Technology. Part B. Microelectronics and Nanometer Structures

JF - Journal of Vacuum Science and Technology. Part B. Microelectronics and Nanometer Structures

SN - 1071-1023

IS - 6

M1 - 06KM02

ER -