Repetitive, Marker-Free, Site-Specific Integration as a Novel Tool for Multiple Chromosomal Integration of DNA

    Research output: Contribution to journalJournal articleResearchpeer-review

    470 Downloads (Pure)


    We present a tool for repetitive, marker-free, site-specific integration in Lactococcus lactis, in which a nonreplicating plasmid vector (pKV6) carrying a phage attachment site (attP) can be integrated into a bacterial attachment site (attB). The novelty of the tool described here is the inclusion of a minimal bacterial attachment site (attBmin), two mutated loxP sequences (lox66 and lox71) allowing for removal of undesirable vector elements (antibiotic resistance marker), and a counterselection marker (oroP) for selection of loxP recombination on the pKV6 vector. When transformed into L. lactis expressing the phage TP901-1 integrase, pKV6 integrates with high frequency into the chromosome, where it is flanked by attL and attR hybrid attachment sites. After expression of Cre recombinase from a plasmid that is not able to replicate in L. lactis, loxP recombinants can be selected for by using 5-fluoroorotic acid. The introduced attBmin site can subsequently be used for a second round of integration. To examine if attP recombination was specific to the attB site, integration was performed in strains containing the attB, attL, and attR sites or the attL and attR sites only. Only attP-attB recombination was observed when all three sites were present. In the absence of the attB site, a low frequency of attP-attL recombination was observed. To demonstrate the functionality of the system, the xylose utilization genes (xylABR and xylT) from L. lactis strain KF147 were integrated into the chromosome of L. lactis strain MG1363 in two steps.
    Copyright © 2013, American Society for Microbiology. All Rights Reserved.
    Original languageEnglish
    JournalApplied and Environmental Microbiology
    Issue number12
    Pages (from-to)3563-3569
    Publication statusPublished - 2013


    Dive into the research topics of 'Repetitive, Marker-Free, Site-Specific Integration as a Novel Tool for Multiple Chromosomal Integration of DNA'. Together they form a unique fingerprint.

    Cite this