TY - JOUR
T1 - Removal of micropollutants during biological phosphorus removal: Impact of redox conditions in MBBR
AU - Torresi, Elena
AU - Tang, Kai
AU - Deng, Jie
AU - Sund, Christina
AU - Smets, Barth F.
AU - Christensson, Magnus
AU - Andersen, Henrik Rasmus
PY - 2019
Y1 - 2019
N2 - Further biological polishing of micropollutants in WWTP effluents is limited by the lack of available carbon for cometabolic degradation. Metabolism of polyhydroxyalkanoates (PHAs) stored intracellularly during enhanced biological phosphorus removal (EBPR) could serve as carbon source for post-denitrification and micropollutant cometabolism. The removal of nine micropollutants (i.e., pharmaceuticals and corrosion inhibitors) was investigated by using Moving Bed Biofilm Reactors (MBBRs), selecting phosphorus (PAO) or glycogen (GAO) accumulating organisms under different redox conditions. Three laboratory-scale MBBRs were operated in sequencing-batch mode under cyclical anaerobic and aerobic/anoxic conditions for phosphorus removal. Batch experiments were performed to evaluate the biodegradation potential of micropollutants along with the utilization of internally stored PHA. Experiments showed that aerobic PAO were able to efficiently remove most of the targeted micropollutants. The removal of benzotriazole, 5‑methyl‑1H‑benzotriazole, carbamazepine, ketoprofen and diclofenac occurred simultaneously to phosphorus uptake and terminated when phosphorus was no longer available. Denitrifying PAO and aerobic GAO exhibited lower removal of micropollutants than aerobic PAO. Degradation profiles of stored PHA suggested a diverse utilization of the different fractions of PHA for phosphorus and micropollutant removal, with PHV (poly 3‑hydroxyvalerate) most likely used for the cometabolism of targeted micropollutants.
AB - Further biological polishing of micropollutants in WWTP effluents is limited by the lack of available carbon for cometabolic degradation. Metabolism of polyhydroxyalkanoates (PHAs) stored intracellularly during enhanced biological phosphorus removal (EBPR) could serve as carbon source for post-denitrification and micropollutant cometabolism. The removal of nine micropollutants (i.e., pharmaceuticals and corrosion inhibitors) was investigated by using Moving Bed Biofilm Reactors (MBBRs), selecting phosphorus (PAO) or glycogen (GAO) accumulating organisms under different redox conditions. Three laboratory-scale MBBRs were operated in sequencing-batch mode under cyclical anaerobic and aerobic/anoxic conditions for phosphorus removal. Batch experiments were performed to evaluate the biodegradation potential of micropollutants along with the utilization of internally stored PHA. Experiments showed that aerobic PAO were able to efficiently remove most of the targeted micropollutants. The removal of benzotriazole, 5‑methyl‑1H‑benzotriazole, carbamazepine, ketoprofen and diclofenac occurred simultaneously to phosphorus uptake and terminated when phosphorus was no longer available. Denitrifying PAO and aerobic GAO exhibited lower removal of micropollutants than aerobic PAO. Degradation profiles of stored PHA suggested a diverse utilization of the different fractions of PHA for phosphorus and micropollutant removal, with PHV (poly 3‑hydroxyvalerate) most likely used for the cometabolism of targeted micropollutants.
KW - Biofilm
KW - EBPR
KW - PHA
KW - Pharmaceutical removal
U2 - 10.1016/j.scitotenv.2019.01.283
DO - 10.1016/j.scitotenv.2019.01.283
M3 - Journal article
C2 - 30716641
AN - SCOPUS:85060872409
VL - 663
SP - 496
EP - 506
JO - Science of the Total Environment
JF - Science of the Total Environment
SN - 0048-9697
ER -