Relation between molecular electronic structure and nuclear spin-induced circular dichroism
- DTU Orbit (21/10/2019)

Relation between molecular electronic structure and nuclear spin-induced circular dichroism
The recently theoretically described nuclear spin-induced circular dichroism (NSCD) is a promising method for the optical
detection of nuclear magnetization. NSCD involves both optical excitations of the molecule and hyperfine interactions and,
thus, it offers a means to realize a spectroscopy with spatially localized, high-resolution information. To survey the factors
relating the molecular and electronic structure to the NSCD signal, we theoretically investigate NSCD of twenty structures
of the four most common nucleic acid bases (adenine, guanine, thymine, cytosine). The NSCD signal correlates with the
spatial distribution of the excited states and couplings between them, reflecting changes in molecular structure and
conformation. This constitutes a marked difference to the nuclear magnetic resonance (NMR) chemical shift, which only
reflects the local molecular structure in the ground electronic state. The calculated NSCD spectra are rationalized by
means of changes in the electronic density and by a sum-over-states approach, which allows to identify the contributions
of the individual excited states. Two separate contributions to NSCD are identified and their physical origins and relative
magnitudes are discussed. The results underline NSCD spectroscopy as a plausible tool with a power for the identification
of not only different molecules, but their specific structures as well.

General information
Publication status: Published
Organisations: Department of Chemistry, University of Oulu, University of Helsinki
Contributors: Štěpánek, P., Coriani, S., Sundholm, D., Ovchinnikov, V. A., Vaara, J.
Number of pages: 11
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Scientific Reports
Volume: 7
Article number: 46617
ISSN (Print): 2045-2322
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.36 SJR 1.533 SNIP 1.258
Web of Science (2017): Impact factor 4.122
Web of Science (2017): Indexed yes
Keywords: Chemical physics, Density functional theory, Electronic structure of atoms and molecules

Electronic versions:
srep46617.pdf
DOIs:
10.1038/srep46617

Bibliographical note
This work is licensed under a Creative Commons Attribution 4.0 International License.
Source: FindIt
Source ID: 2357954385
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review