TY - JOUR
T1 - Relating Magnetic Properties and High Hyperthermia Performance of Iron Oxide Nanoflowers
AU - Bender, Philipp
AU - Fock, Jeppe
AU - Frandsen, Cathrine
AU - Hansen, Mikkel Fougt
AU - Balceris, Christoph
AU - Ludwig, Frank
AU - Posth, Oliver
AU - Wetterskog, Erik
AU - Bogart, Lara K.
AU - Southern, Paul
AU - Szczerba, Wojciech
AU - Zeng, Lunjie
AU - Witte, Kerstin
AU - Gruettner, Cordula
AU - Westphal, Fritz
AU - Honecker, Dirk
AU - González-Alonso, David
AU - Fernández Barquín, Luis
AU - Johansson, Christer
PY - 2018
Y1 - 2018
N2 - We investigated in depth the interrelations among structure, magnetic properties, relaxation dynamics and magnetic hyperthermia performance of magnetic nanoflowers. The nanoflowers are about 39 nm in size, and consist of densely packed iron oxide cores. They display a remanent magnetization, which we explain by the exchange coupling between the cores, but we observe indications for internal spin disorder. By polarized small angle neutron scattering we unambiguously confirm that on average the nanoflowers are preferentially magnetized along one direction. The extracted discrete relaxation time distribution of the colloidally dispersed particles indicates the presence of three distinct relaxation contributions. We can explain the two slower processes by Brownian and classical Néel relaxation, respectively. The additionally observed very fast relaxation contributions are attributed by us to the relaxation of the disordered spins within the nanoflowers. Finally, we show that the intrinsic loss power (ILP, magnetic hyperthermia performance) of the nanoflowers measured in colloidal dispersion at high frequency is comparatively large and independent of the viscosity of the surrounding medium. This concurs with our assumption that the observed relaxation in the high frequency range is primarily a result of internal spin relaxation, and probably connected to the disordered spins within the individual nanoflowers.
AB - We investigated in depth the interrelations among structure, magnetic properties, relaxation dynamics and magnetic hyperthermia performance of magnetic nanoflowers. The nanoflowers are about 39 nm in size, and consist of densely packed iron oxide cores. They display a remanent magnetization, which we explain by the exchange coupling between the cores, but we observe indications for internal spin disorder. By polarized small angle neutron scattering we unambiguously confirm that on average the nanoflowers are preferentially magnetized along one direction. The extracted discrete relaxation time distribution of the colloidally dispersed particles indicates the presence of three distinct relaxation contributions. We can explain the two slower processes by Brownian and classical Néel relaxation, respectively. The additionally observed very fast relaxation contributions are attributed by us to the relaxation of the disordered spins within the nanoflowers. Finally, we show that the intrinsic loss power (ILP, magnetic hyperthermia performance) of the nanoflowers measured in colloidal dispersion at high frequency is comparatively large and independent of the viscosity of the surrounding medium. This concurs with our assumption that the observed relaxation in the high frequency range is primarily a result of internal spin relaxation, and probably connected to the disordered spins within the individual nanoflowers.
U2 - 10.1021/acs.jpcc.7b11255
DO - 10.1021/acs.jpcc.7b11255
M3 - Journal article
SN - 1932-7447
VL - 122
SP - 3068
EP - 3077
JO - The Journal of Physical Chemistry Part C
JF - The Journal of Physical Chemistry Part C
IS - 5
ER -