Relating aerosol mass spectra to composition and nanostructure of soot particles - DTU Orbit (27/09/2019)

Relating aerosol mass spectra to composition and nanostructure of soot particles

The composition and carbon nanostructure of soot are important parameters influencing health and climate effects, and the efficacy of soot mitigation technologies. We used laser-vaporization, electron-ionization aerosol mass spectrometry (or SP-AMS) to systematically investigate relationships between aerosol mass spectra, carbon nanostructure (HRTEM), and composition (thermal-optical carbon analysis) for soot with varying physicochemical properties. SP-AMS refractory black carbon concentrations (based on clusters) were correlated to elemental carbon ($r=0.98$, $p<10^{-8}$) and equivalent black carbon (aethalometer) concentrations. The SP-AMS large carbon ($C^+≥6$, midcarbons and fullerene carbons) fraction was inversely correlated to fringe length ($r=-0.97$, $p=0.028$) and linearly correlated to the fraction of refractory organic carbon that partially pyrolyze during heating ($r=0.89$, $p<10^{-4}$). This refractory organic carbon material was incompletely detected with conventional aerosol mass spectrometry (flash vaporization at 600°C). This suggests that (SP-AMS) refractory carbon cluster analysis provides insight to chemical bonding and nanostructures in refractory carbon materials, lowcarbons ($C^+≥5$) indicate mature soot and large carbons indicate refractory organic carbon and amorphous nanostructures related to C_5-components. These results have implications for assessments of soot particle mixing state and brown carbon absorption in the atmosphere and enable novel, on-line analysis of engineered carbon nanomaterials and soot characteristics relevant for climate and health.

General information

Publication status: Published
Organisations: National Centre for Nano Fabrication and Characterization, Lund University, University of New South Wales, Aerodyne Research, Inc.
Corresponding author: Malmborg, V. B.
Pages: 535-546
Publication date: 2019
Peer-reviewed: Yes

Publication information

Journal: Carbon
Volume: 142
ISSN (Print): 0008-6223
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
Original language: English
Electronic versions:
1_s2.0_S0008622318309886_main.pdf
DOIs:
10.1016/j.carbon.2018.10.072
Source: FindIt
Source ID: 2440655816
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review