Regulatory perturbations of ribosome allocation in bacteria reshape the growth proteome with a trade-off in adaptation capacity

David Hidalgo, César A. Martínez-Ortiz, Bernhard O. Palsson, José I. Jiménez, José Utrilla*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

5 Downloads (Pure)

Abstract

Bacteria regulate their cellular resource allocation to enable fast growth-adaptation to a variety of environmental niches. We studied the ribosomal allocation, growth, and expression profiles of two sets of fast-growing mutants of Escherichia coli K-12 MG1655. Mutants with only three of the seven copies of ribosomal RNA operons grew faster than the wild-type strain in minimal media and show similar phenotype to previously studied fast-growing rpoB mutants. Comparing these two different regulatory perturbations (rRNA promoters or rpoB mutations), we show how they reshape the proteome for growth with a concomitant fitness cost. The fast-growing mutants shared downregulation of hedging functions and upregulated growth functions. They showed longer diauxic shifts and reduced activity of gluconeogenic promoters during glucose-acetate shifts, suggesting reduced availability of the RNA polymerase for expressing hedging proteome. These results show that the regulation of ribosomal allocation underlies the growth/hedging phenotypes obtained from laboratory evolution experiments.

Original languageEnglish
Article number103879
JournaliScience
Volume25
Issue number3
Number of pages20
ISSN2589-0042
DOIs
Publication statusPublished - 2022

Fingerprint

Dive into the research topics of 'Regulatory perturbations of ribosome allocation in bacteria reshape the growth proteome with a trade-off in adaptation capacity'. Together they form a unique fingerprint.

Cite this