Reference Design and Simulation Framework of a Multi-Megawatt Airborne Wind Energy System

Dylan Eijkelhof, Sebastian Rapp, Urban Fasel, Mac Gaunaa, Roland Schmehl*

*Corresponding author for this work

    Research output: Contribution to journalConference articleResearchpeer-review

    79 Downloads (Pure)


    In this paper, we present the design and computational model of a representative multi-megawatt airborne wind energy (AWE) system, together with a simulation framework that accounts for the flight dynamics of the fixed-wing aircraft and the sagging of the tether, combining this with flight control and optimisation strategies to derive the power curve of the system. The computational model is based on a point mass approximation of the aircraft, a discretisation of the tether by five elastic segments and a rotational degree of freedom of the winch. The aircraft has a wing surface area of 150 m2 and is operated in pumping cycles, alternating between crosswind flight manoeuvres during reel out of the tether, and rapid decent towards the ground station during reel in. To maximise the net cycle power, we keep the design parameters of the aircraft constant, while tuning the operational and controller parameters for different wind speeds and given contraints. We find that the presented design can generate a net cycle power of up to 3.8 megawatts.
    Original languageEnglish
    Article number32020
    Book seriesJournal of Physics: Conference Series
    Issue number3
    Number of pages12
    Publication statusPublished - 2020
    EventTORQUE 2020 - Online event, Netherlands
    Duration: 28 Sept 20202 Oct 2020


    ConferenceTORQUE 2020
    LocationOnline event
    Internet address


    Dive into the research topics of 'Reference Design and Simulation Framework of a Multi-Megawatt Airborne Wind Energy System'. Together they form a unique fingerprint.

    Cite this