Reduced design load basis for ultimate blade loads estimation in multidisciplinary design optimization frameworks

Christian Pavese, Carlo Tibaldi, Torben J. Larsen, Taeseong Kim, Kenneth Thomsen

    Research output: Contribution to journalConference articleResearchpeer-review

    720 Downloads (Pure)

    Abstract

    The aim is to provide a fast and reliable approach to estimate ultimate blade loads for a multidisciplinary design optimization (MDO) framework. For blade design purposes, the standards require a large amount of computationally expensive simulations, which cannot be efficiently run each cost function evaluation of an MDO process. This work describes a method that allows integrating the calculation of the blade load envelopes inside an MDO loop. Ultimate blade load envelopes are calculated for a baseline design and a design obtained after an iteration of an MDO. These envelopes are computed for a full standard design load basis (DLB) and a deterministic reduced DLB. Ultimate loads extracted from the two DLBs with the two blade designs each are compared and analyzed. Although the reduced DLB supplies ultimate loads of different magnitude, the shape of the estimated envelopes are similar to the one computed using the full DLB. This observation is used to propose a scheme that is computationally cheap, and that can be integrated inside an MDO framework, providing a sufficiently reliable estimation of the blade ultimate loading. The latter aspect is of key importance when design variables implementing passive control methodologies are included in the formulation of the optimization problem. An MDO of a 10 MW wind turbine blade is presented as an applied case study to show the efficacy of the reduced DLB concept.
    Original languageEnglish
    Article number062005
    Book seriesJournal of Physics: Conference Series (Online)
    Volume753
    Number of pages15
    ISSN1742-6596
    DOIs
    Publication statusPublished - 2016
    EventThe Science of Making Torque from Wind 2016 - Technische Universität München (TUM), Munich, Germany
    Duration: 5 Oct 20167 Oct 2016
    Conference number: 6
    https://www.events.tum.de/?sub=29

    Conference

    ConferenceThe Science of Making Torque from Wind 2016
    Number6
    LocationTechnische Universität München (TUM)
    Country/TerritoryGermany
    CityMunich
    Period05/10/201607/10/2016
    Internet address

    Bibliographical note

    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

    Fingerprint

    Dive into the research topics of 'Reduced design load basis for ultimate blade loads estimation in multidisciplinary design optimization frameworks'. Together they form a unique fingerprint.

    Cite this