Recycling and imaging of nuclear singlet hyperpolarization

Giuseppe Pileio, Sean Bowen, Christoffer Laustsen, Michael C. D. Tayler, Joseph T. Hill-Cousins, Lynda J. Brown, Richard C. D. Brown, Jan H. Ardenkjaer-Larsen, Malcolm H. Levitt

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

The strong enhancement of NMR signals achieved by hyperpolarization decays, at best, with a time constant of a few minutes. Here, we show that a combination of long-lived singlet states, molecular design, magnetic field cycling, and specific radiofrequency pulse sequences allows repeated observation of the same batch of polarized nuclei over a period of 30 min and more. We report a recycling protocol in which the enhanced nuclear polarization achieved by dissolution-DNP is observed with full intensity and then returned to singlet order. MRI experiments may be run on a portion of the available spin polarization, while the remaining is preserved and made available for a later use. An analogy is drawn with a "spin bank" or "resealable container" in which highly polarized spin order may be deposited and retrieved. © 2013 American Chemical Society.
Original languageEnglish
JournalJournal of the American Chemical Society
Volume135
Issue number13
Pages (from-to)5084-5088
ISSN0002-7863
DOIs
Publication statusPublished - 2013

Keywords

  • Recycling
  • Spin polarization
  • Nuclear magnetic resonance

Fingerprint Dive into the research topics of 'Recycling and imaging of nuclear singlet hyperpolarization'. Together they form a unique fingerprint.

Cite this