Reconstructing organisms in silico: genome-scale models and their emerging applications

Xin Fang, Colton J. Lloyd, Bernhard O. Palsson*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

75 Downloads (Pure)


Escherichia coliis considered to be the best-known microorganism given the large number of published studies detailing its genes, its genome and the biochemical functions of its molecular components. This vast literature has been systematically assembled into a reconstruction of the biochemical reaction networks that underlieE. coli's functions, a process which is now being applied to an increasing number of microorganisms. Genome-scale reconstructed networks are organized and systematized knowledge bases that have multiple uses, including conversion into computational models that interpret and predict phenotypic states and the consequences of environmental and genetic perturbations. These genome-scale models (GEMs) now enable us to develop pan-genome analyses that provide mechanistic insights, detail the selection pressures on proteome allocation and address stress phenotypes. In this Review, we first discuss the overall development of GEMs and their applications. Next, we review the evolution of the most complete GEM that has been developed to date: theE. coliGEM. Finally, we explore three emerging areas in genome-scale modelling of microbial phenotypes: collections of strain-specific models, metabolic and macromolecular expression models, and simulation of stress responses. Genome-scale models (GEMs) are mathematical representations of reconstructed networks that facilitate computation and prediction of phenotypes, and are useful tools for predicting the biological capabilities of microorganisms. In this Review, Fang, Lloyd and Palsson discuss the development and the emerging application of GEMs.
Original languageEnglish
JournalNature Reviews Microbiology
Pages (from-to)731–743
Publication statusPublished - 2020


Dive into the research topics of 'Reconstructing organisms in silico: genome-scale models and their emerging applications'. Together they form a unique fingerprint.

Cite this