Reconciled freshwater flux into the Godthåbsfjord system from satellite and airborne remote sensing

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

As the rapid reduction in ice volume of the Greenland ice sheet (GrIS) continues, increased melt water flux from the GrIS enters the deep Greenlandic fjords. This increased freshwater flux may change the salinity and eventually the ecology of the fjords. Here, we present a case study in which we, from various remote-sensing data sets, estimate the freshwater flux from the GrIS into a specific fjord system, the Godthåbsfjord, in southwest Greenland. The area of the GrIS draining into Godthåbsfjord covers approximately 36,700 km2. The large areal extent and the multiple outlets from the GrIS hamper in situ observations. Here, we evaluate available data from remote sensing and find a drainage basin in rapid change. An analysis of data from the Gravity Recovery and Climate Experiment (GRACE) satellites shows a mean seasonal freshwater flux into Godthåbsfjord of 18.2 ± 1.2 Gt, in addition to an imbalance in the mass balance of the drainage basin from 2003 to 2013 of 14.4 ± 0.2 Gt year−1. Altimetry data from air and spaceborne missions also suggest rapid changes in the outlet glacier dynamics. We find that only applying data from the Ice, Cloud, and land Elevation Satellite (ICESat) mission the mass change of the Godthåbsfjord drainage basin is significantly underestimated. When including additional laser-altimetry surveys, to account for changes in the outlet glaciers elevation, not captured by ICESat, the altimetry data were able to reconcile the basin mass balance with the gravimetric estimate and provide a higher spatial resolution of the mass changes.
Original languageEnglish
JournalInternational Journal of Remote Sensing
Volume36
Issue number1
Pages (from-to)361-374
ISSN0143-1161
DOIs
Publication statusPublished - 2015

Cite this

@article{1d92dc7e65c742e89bdf90b1378c6a26,
title = "Reconciled freshwater flux into the Godth{\aa}bsfjord system from satellite and airborne remote sensing",
abstract = "As the rapid reduction in ice volume of the Greenland ice sheet (GrIS) continues, increased melt water flux from the GrIS enters the deep Greenlandic fjords. This increased freshwater flux may change the salinity and eventually the ecology of the fjords. Here, we present a case study in which we, from various remote-sensing data sets, estimate the freshwater flux from the GrIS into a specific fjord system, the Godth{\aa}bsfjord, in southwest Greenland. The area of the GrIS draining into Godth{\aa}bsfjord covers approximately 36,700 km2. The large areal extent and the multiple outlets from the GrIS hamper in situ observations. Here, we evaluate available data from remote sensing and find a drainage basin in rapid change. An analysis of data from the Gravity Recovery and Climate Experiment (GRACE) satellites shows a mean seasonal freshwater flux into Godth{\aa}bsfjord of 18.2 ± 1.2 Gt, in addition to an imbalance in the mass balance of the drainage basin from 2003 to 2013 of 14.4 ± 0.2 Gt year−1. Altimetry data from air and spaceborne missions also suggest rapid changes in the outlet glacier dynamics. We find that only applying data from the Ice, Cloud, and land Elevation Satellite (ICESat) mission the mass change of the Godth{\aa}bsfjord drainage basin is significantly underestimated. When including additional laser-altimetry surveys, to account for changes in the outlet glaciers elevation, not captured by ICESat, the altimetry data were able to reconcile the basin mass balance with the gravimetric estimate and provide a higher spatial resolution of the mass changes.",
author = "Simonsen, {Sebastian Bjerregaard} and Barletta, {Valentina Roberta} and Ren{\'e} Forsberg and S{\o}rensen, {Louise Sandberg}",
year = "2015",
doi = "10.1080/01431161.2014.995277",
language = "English",
volume = "36",
pages = "361--374",
journal = "International Journal of Remote Sensing",
issn = "0143-1161",
publisher = "CRC Press/Balkema",
number = "1",

}

TY - JOUR

T1 - Reconciled freshwater flux into the Godthåbsfjord system from satellite and airborne remote sensing

AU - Simonsen, Sebastian Bjerregaard

AU - Barletta, Valentina Roberta

AU - Forsberg, René

AU - Sørensen, Louise Sandberg

PY - 2015

Y1 - 2015

N2 - As the rapid reduction in ice volume of the Greenland ice sheet (GrIS) continues, increased melt water flux from the GrIS enters the deep Greenlandic fjords. This increased freshwater flux may change the salinity and eventually the ecology of the fjords. Here, we present a case study in which we, from various remote-sensing data sets, estimate the freshwater flux from the GrIS into a specific fjord system, the Godthåbsfjord, in southwest Greenland. The area of the GrIS draining into Godthåbsfjord covers approximately 36,700 km2. The large areal extent and the multiple outlets from the GrIS hamper in situ observations. Here, we evaluate available data from remote sensing and find a drainage basin in rapid change. An analysis of data from the Gravity Recovery and Climate Experiment (GRACE) satellites shows a mean seasonal freshwater flux into Godthåbsfjord of 18.2 ± 1.2 Gt, in addition to an imbalance in the mass balance of the drainage basin from 2003 to 2013 of 14.4 ± 0.2 Gt year−1. Altimetry data from air and spaceborne missions also suggest rapid changes in the outlet glacier dynamics. We find that only applying data from the Ice, Cloud, and land Elevation Satellite (ICESat) mission the mass change of the Godthåbsfjord drainage basin is significantly underestimated. When including additional laser-altimetry surveys, to account for changes in the outlet glaciers elevation, not captured by ICESat, the altimetry data were able to reconcile the basin mass balance with the gravimetric estimate and provide a higher spatial resolution of the mass changes.

AB - As the rapid reduction in ice volume of the Greenland ice sheet (GrIS) continues, increased melt water flux from the GrIS enters the deep Greenlandic fjords. This increased freshwater flux may change the salinity and eventually the ecology of the fjords. Here, we present a case study in which we, from various remote-sensing data sets, estimate the freshwater flux from the GrIS into a specific fjord system, the Godthåbsfjord, in southwest Greenland. The area of the GrIS draining into Godthåbsfjord covers approximately 36,700 km2. The large areal extent and the multiple outlets from the GrIS hamper in situ observations. Here, we evaluate available data from remote sensing and find a drainage basin in rapid change. An analysis of data from the Gravity Recovery and Climate Experiment (GRACE) satellites shows a mean seasonal freshwater flux into Godthåbsfjord of 18.2 ± 1.2 Gt, in addition to an imbalance in the mass balance of the drainage basin from 2003 to 2013 of 14.4 ± 0.2 Gt year−1. Altimetry data from air and spaceborne missions also suggest rapid changes in the outlet glacier dynamics. We find that only applying data from the Ice, Cloud, and land Elevation Satellite (ICESat) mission the mass change of the Godthåbsfjord drainage basin is significantly underestimated. When including additional laser-altimetry surveys, to account for changes in the outlet glaciers elevation, not captured by ICESat, the altimetry data were able to reconcile the basin mass balance with the gravimetric estimate and provide a higher spatial resolution of the mass changes.

U2 - 10.1080/01431161.2014.995277

DO - 10.1080/01431161.2014.995277

M3 - Journal article

VL - 36

SP - 361

EP - 374

JO - International Journal of Remote Sensing

JF - International Journal of Remote Sensing

SN - 0143-1161

IS - 1

ER -