Recirculation of biomass ashes onto forest soils: Ash composition, mineralogy and leaching properties

In Denmark, increasing amounts of wood ashes are generated from biomass combustion for energy production. The utilisation of ashes on top of forest soil for liming purposes has been proposed as an alternative to landfilling. Danish wood ash samples were collected and characterised with respect to chemical composition, mineralogy and leaching properties (batch leaching at L/S 2 and 10L/kg, and pH-dependent leaching at 10L/kg). Large variations in the ash liming properties were observed (ANC7.5: 1.8-6.4 meqH+/g), indicating that similar soil application dosages may result in different liming effects. High contents of Ca, Si, P, K and Mg were observed in all samples, while the highest contents of S and N were found in fly ashes and mixed ashes (combination of fly and bottom ashes). Similarly, the highest contents of some trace metals, e.g. Cd, Mo and Se, were observed for fly ash. Releases of major, minor and trace elements were affected significantly by pH: high releases of PO4 3-, Mg, Zn, Cu and Cd were found for acidic conditions relevant to forest soils, while the highest releases of Mo and Cr were observed in alkaline conditions. Mineral phases were selected based on XRD analyses and the existing literature, and they were applied as inputs for the geochemical modelling of pH-dependent leaching. Mineral dissolution was found adequate for a wide range of major elements and nutrients, while the description of trace elements could be done only for parts of the pH-range. Content and leaching of PAHs were observed below detection limits. The source-term release of Ca, K, Mg, Mn, and P in acidic conditions relevant to forest soils was higher than ten years of atmospheric deposition, in contrast to the relatively low release of Al, Fe and Na. The potential release of Cd was found to be the most critical element compared with soil quality criteria, whereas the maximum theoretical loads of Ba, Cd, Cr, Sr, Mo, Ni, Pb, Sb, Se, Sn and V were relatively low.

General information
Publication status: Published
Contributors: Maresca, A., Hyks, J., Astrup, T. F.
Pages: 127-138
Publication date: 2017
Peer-reviewed: Yes