Recent progress on hygroscopic materials for indoor moisture buffering

Xu Zhang, Menghao Qin, Kan Zu

    Research output: Contribution to journalConference articleResearchpeer-review

    129 Downloads (Pure)

    Abstract

    Once in contact with the indoor air, hygroscopic materials can moderate the indoor humidity fluctuation by adsorbing or releasing water vapour, and then improve the moisture regulation and thermal management of buildings. It is desirable to explore the characterized properties of these materials about moisture buffering behaviour. In this regard, we review various hygroscopic materials used for the built environment control. The hygrothermal properties of hygroscopic materials often can be characterized by some parameters, such as water vapour adsorption/desorption capacity, water vapour adsorption/desorption rate, water vapour diffusion coefficient, and so on. To provide an insight on the existing research on humidity control materials, different research studies and the recent progress on humidity control materials have been summarized. The materials include traditional and conventional building materials, some natural materials, and novel humidity control materials. Besides, the relevant parameters are considered as well as the improvement suggestions to enhance the application of humidity control materials in building environments. Finally, new multifunctional materials and intelligent moisture control materials together with the corresponding systems are collated to summarize the latest research trends. The overview of the application of hygroscopic materials can provide current and future researchers guidelines for the science-oriented design of moisture control systems for new energy-efficient buildings.
    Original languageEnglish
    Article number012003
    Book seriesJournal of Physics: Conference Series
    Volume2069
    Issue number1
    Number of pages8
    ISSN1742-6596
    DOIs
    Publication statusPublished - 2021
    Event8th International Buildings Physics Conference 2021 - Online event, Copenhagen, Denmark
    Duration: 25 Aug 202127 Aug 2021
    Conference number: 8
    https://www.ibpc2021.org/

    Conference

    Conference8th International Buildings Physics Conference 2021
    Number8
    LocationOnline event
    Country/TerritoryDenmark
    CityCopenhagen
    Period25/08/202127/08/2021
    Internet address

    Fingerprint

    Dive into the research topics of 'Recent progress on hygroscopic materials for indoor moisture buffering'. Together they form a unique fingerprint.

    Cite this