TY - JOUR
T1 - Recent advances and prospects of persistent luminescent materials as inner secondary self-luminous light source for photocatalytic applications
AU - Kang, Fengwen
AU - Sun, Guohuan
AU - Boutinaud, Philippe
AU - Wu, Haoyi
AU - Ma, Fei Xiang
AU - Lu, Jian
AU - Gan, Jiulin
AU - Bian, Haidong
AU - Gao, Fei
AU - Xiao, Sanshui
PY - 2021/1/1
Y1 - 2021/1/1
N2 - Nowadays, materials with persistent luminescence (MPLs) have attracted growing attention in the photocatalytic field because they can act as an inner light source to irradiate the photocatalytic materials (PCMs) and sustain their photocatalytic activities in the absence of the external irradiation source. The motivation of the present work is to provide a review of the MPL@PCM composites that are of interest for both photocatalytic and lighting fields. In terms of the unique luminescence of MPLs and the principal optical properties of PCMs, the review is organized as follows: first, we categorize and discuss a number of rare-earth (RE)/non-RE-doped MPLs and bulk MPLs, along with their emission/persistent ranges and potentially-coupled PCM counterparts. Then, we present and discuss the intrinsic nature of the photocatalytic properties and the working principles of the MPLs that have been coupled with the PCMs. In the 4th section, we summarize the principal synthesis strategies that are reported for the MPL@PCM composites. At last, by taking advantages of some typical reported works, we exhibit the photocatalytic applications of the MPL@PCM composites, and give a summary, perspectives, potential challenges and future development directions to this review. With the profound impact of the persistent luminescence, we believe that this review will be not only of particular interest to the scientists in the lighting field, but can also attract those with backgrounds in the fields of the environmental science, materials and physics, chemistry, energy fuels, and their coupling subdivisions to jointly address some of the major environmental issues like degradation of organic waste, removal of gas-phased materials, etc.
AB - Nowadays, materials with persistent luminescence (MPLs) have attracted growing attention in the photocatalytic field because they can act as an inner light source to irradiate the photocatalytic materials (PCMs) and sustain their photocatalytic activities in the absence of the external irradiation source. The motivation of the present work is to provide a review of the MPL@PCM composites that are of interest for both photocatalytic and lighting fields. In terms of the unique luminescence of MPLs and the principal optical properties of PCMs, the review is organized as follows: first, we categorize and discuss a number of rare-earth (RE)/non-RE-doped MPLs and bulk MPLs, along with their emission/persistent ranges and potentially-coupled PCM counterparts. Then, we present and discuss the intrinsic nature of the photocatalytic properties and the working principles of the MPLs that have been coupled with the PCMs. In the 4th section, we summarize the principal synthesis strategies that are reported for the MPL@PCM composites. At last, by taking advantages of some typical reported works, we exhibit the photocatalytic applications of the MPL@PCM composites, and give a summary, perspectives, potential challenges and future development directions to this review. With the profound impact of the persistent luminescence, we believe that this review will be not only of particular interest to the scientists in the lighting field, but can also attract those with backgrounds in the fields of the environmental science, materials and physics, chemistry, energy fuels, and their coupling subdivisions to jointly address some of the major environmental issues like degradation of organic waste, removal of gas-phased materials, etc.
KW - Inner light source
KW - Non-RE
KW - Persistent luminescence
KW - Photocatalysis
KW - Rare-earth (RE)
KW - Self-luminous
U2 - 10.1016/j.cej.2020.126099
DO - 10.1016/j.cej.2020.126099
M3 - Review
AN - SCOPUS:85089522013
SN - 1385-8947
VL - 403
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 126099
ER -