This paper presents the real time evaluation of the dynamic tariff (DT) method for alleviating congestion in a distribution networks with high penetration of distributed energy resources (DERs). The DT method is implemented in a real time digital testing platform that emulates a real distribution network. The platform returns power system status that indicates the efficiency of the DT method in a real power system as a congestion management tool. Results show that the current formulation of the DT method through direct current optimal power flow (DCOPF) has some limitations as reactive power flows are ignored in the DCOPF. Reactive power flows causes overloaded transmission lines when the DT method allows consumption at network buses that meets active power transfer capability of transmission lines. Based on the real time emulation of the DT method, possible changes are suggested for the DT method that increases the efficiency of the method.