Real-time control of electronic motion: Application to NaI

Michael Grønager, Niels Engholm Henriksen

Research output: Contribution to journalJournal articleResearchpeer-review

293 Downloads (Pure)

Abstract

We study theoretically the electronic and nuclear dynamics in NaI. After a femtosecond pulse has prepared a wave packet in the first excited state, we consider the adiabatic and the nonadiabatic electronic dynamics and demonstrate explicitly that a nonstationary electron is created in NaI corresponding to electron transfer between Na and I. The electronic motion is introduced via nuclear motion, more specifically, through nonadiabatic curve crossing and the electronic motion is here on the same time scale as the nuclear motion. We show that the branching ratio between the channels Na + I and Na+ + I- depends on the electron distribution (i.e., where the electron "sits") prior to the time where the bond is broken by a subpicosecond half-cycle unipolar electromagnetic pulse. Thus we control, in real time, which nucleus one of the valence electrons will follow after the bond is broken. (C) 1998 American Institute of Physics.
Original languageEnglish
JournalJournal of Chemical Physics
Volume109
Issue number11
Pages (from-to)4335-4341
ISSN0021-9606
DOIs
Publication statusPublished - 1998

Bibliographical note

Copyright (1998) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Keywords

  • STATES
  • SEQUENCE INDUCED CONTROL
  • IONIZATION
  • ENERGY CURVES
  • LASER CONTROL
  • SCHRODINGER-EQUATION
  • PHOTODISSOCIATION
  • QUANTUM-MECHANICAL CALCULATIONS
  • CYCLE ELECTROMAGNETIC PULSES
  • MOLECULAR-DYNAMICS

Cite this