Abstract
This paper presents an improved evolutionary algorithm based on quantum computing for optima l steady-state performance of power systems. However, the proposed general quantum genetic algorithm (GQ-GA) can be applied in various combinatorial optimization problems. In this study the GQ-GA determines the optimal settings of control variables, such as generator voltages, transformer taps and shunt VAR compensation devices for optimal reactive power and voltage control of IEEE 30-bus and 118-bus systems. The results of GQ-GA are compared with those given by the state-of-the-art evolutionary computational techniques such as enhanced GA, multi-objective evolutionary algorithm and particle swarm optimization algorithms, as well as the classical primal-dual interior-point optimal power flow algorithm. The comparison demonstrates the ability of the GQ-GA in reaching more optimal solutions.
Original language | English |
---|---|
Journal | Expert Systems with Applications |
Volume | 36 |
Issue number | 3 |
Pages (from-to) | 6118-6126 |
ISSN | 0957-4174 |
DOIs | |
Publication status | Published - 2009 |
Keywords
- Genetic algorithm
- Reactive power control
- Quantum mechanics computation
- Steady-state performance
- Meta-heuristic techniques