Re-activation of degraded nickel cermet anodes - Nano-particle formation via reverse current pulses - DTU Orbit (09/09/2019)

The Ni/yttria-stabilized-zirconia (YSZ) cermet is the most commonly applied fuel electrode for solid oxide cells (SOCs). Loss of Ni/YSZ electrode activity is a key life-time limiting factor of the SOC. Developing means to mitigate this loss of performance or re-activate a fuel electrode is therefore important.

General information
Publication status: Published
Organisations: Department of Energy Conversion and Storage, Applied Electrochemistry, Polytechnic University of Turin
Corresponding author: Hauch, A.
Contributors: Hauch, A., Marchese, M., Lanzini, A., Graves, C. R.
Pages: 110-120
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Power Sources
Volume: 377
ISSN (Print): 0378-7753
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 7.19 SJR 1.947 SNIP 1.433
Web of Science (2018): Impact factor 7.467
Web of Science (2018): Indexed yes
Original language: English
Keywords: Solid oxide fuel cells, Reverse current treatment, Ni/YSZ electrode, Microstructure, Electrochemical impedance spectroscopy, Activation
DOIs:
10.1016/j.jpowsour.2017.11.088
Source: Findit
Source ID: 2394556243
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review