Abstract
Computational methods were applied to the Pd-catalyzed intramolecular allylations of resonance-stabilized carbanions obtained from amide and ketone substrates, with the aim of rationalizing the endo- vs. exo-selectivity in the cyclizations. In addition, ester substrates were prepared and subjected to the Pd-catalyzed cyclization conditions, and were found to form lactones via exo attack. DFT calculations using BP86/LACVP*+level of theory with a CH2Cl2 solvation correction reproduce the relative transition state energies. The preference for exo-cyclization of the nitrogen-containing starting material appears to result from the preference for near-planarity of the amide N. Both the oxygen- and nitrogen tethers are too short to allow efficient endo-cyclization, whereas the carbon-tether is long enough to allow favorable endo-cyclization. The carbon tether also disfavors the exo-cyclization transition states slightly from eclipsing interaction, leading to almost isoenergetic exo- and endo-transition states, and thus accounting for the experimentally observed mixture of 5- and 7-membered ring products.
Original language | English |
---|---|
Journal | Organometallics |
Volume | 22 |
Issue number | 9 |
Pages (from-to) | 1849-1855 |
ISSN | 0276-7333 |
Publication status | Published - 2003 |