Rate-Based Modeling for Packed Absorption Column of the MEA-CO2-Water System at High-Pressure and High-CO2 Loading Conditions

Research output: Contribution to journalJournal article – Annual report year: 2019Researchpeer-review

DOI

View graph of relations

Pandya proposed the first steady-state rate-based model for the chemical absorption process in a packed column using the aqueous CO2-MEA system. Later several modeling studies are also reported based on Pandya's approach but limited to low pressure (≈1 bar) and low CO2 loadings (0.5 mol/mol) CO2 loadings, are added. This is achieved by theoretically segmenting the packed column into two sections. This strategy simplifies the computation of subsequent fast and slow reaction regimes that occur over a high-CO2 loading range. The gas-liquid nonideal behavior is described using the Peng-Robinson (EOS) and Kent Eisenberg models. The developed model is effectively validated using the experimental data at low- (≈1.03 bar) and high- (50 bar) pressure conditions over a wide CO2 loading range (≈0-1.0 mol/mol). In a parity plot between measured and simulated CO2 concentration, R2 is found to be 0.99 and 0.97, respectively, for the low- (≈1.03 bar) and high- (50 bar) pressure systems. This indicates that the proposed model can accurately predict the critical design parameters at the high-pressure and high-CO2 loading conditions, with minimum computational intricacy.
Original languageEnglish
JournalIndustrial and Engineering Chemistry Research
Volume58
Pages (from-to)12235−12246
ISSN0888-5885
DOIs
Publication statusPublished - 2019
CitationsWeb of Science® Times Cited: No match on DOI

ID: 185300620