TY - JOUR
T1 - Rapid whole genome sequencing for the detection and characterization of microorganisms directly from clinical samples.
AU - Hasman, Henrik
AU - Saputra, Dhany
AU - Sicheritz-Pontén, Thomas
AU - Lund, Ole
AU - Svendsen, Christina Aaby
AU - Frimodt-Møller, Niels
AU - Aarestrup, Frank Møller
PY - 2014
Y1 - 2014
N2 - Whole genome sequencing (WGS) is becoming available as a routine tool for clinical microbiology. If applied directly on clinical samples this could further reduce diagnostic time and thereby improve control and treatment. A major bottle-neck is the availability of fast and reliable bioinformatics tools. This study was conducted to evaluate the applicability of WGS directly on clinical samples and to develop easy-to-use bioinformatics tools for analysis of the sequencing data. Thirty-five random urine samples from patients with suspected urinary tract infections were examined using conventional microbiology, WGS of isolated bacteria and by directly sequencing on pellets from the urine. A rapid method for analyzing the sequence data was developed. Bacteria were cultivated from 19 samples, but only in pure culture from 17. WGS improved the identification of the cultivated bacteria and almost complete agreement was observed between phenotypic and predicted antimicrobial susceptibility. Complete agreement was observed between species identification, multi-locus-sequence typing and phylogenetic relationship for the Escherichia coli and Enterococcus faecalis isolates when comparing the results of WGS of cultured isolates and directly from the urine samples. Sequencing directly from the urine enabled bacterial identification in polymicrobic samples. Additional putative pathogenic strains were observed in some culture negative samples. WGS directly on clinical samples can provide clinically relevant information and drastically reduce diagnostic time. This may prove very useful, but the need for data analysis is still a hurdle to clinical implementation. To overcome this problem a publicly available bioinformatics tool was developed in this study.
AB - Whole genome sequencing (WGS) is becoming available as a routine tool for clinical microbiology. If applied directly on clinical samples this could further reduce diagnostic time and thereby improve control and treatment. A major bottle-neck is the availability of fast and reliable bioinformatics tools. This study was conducted to evaluate the applicability of WGS directly on clinical samples and to develop easy-to-use bioinformatics tools for analysis of the sequencing data. Thirty-five random urine samples from patients with suspected urinary tract infections were examined using conventional microbiology, WGS of isolated bacteria and by directly sequencing on pellets from the urine. A rapid method for analyzing the sequence data was developed. Bacteria were cultivated from 19 samples, but only in pure culture from 17. WGS improved the identification of the cultivated bacteria and almost complete agreement was observed between phenotypic and predicted antimicrobial susceptibility. Complete agreement was observed between species identification, multi-locus-sequence typing and phylogenetic relationship for the Escherichia coli and Enterococcus faecalis isolates when comparing the results of WGS of cultured isolates and directly from the urine samples. Sequencing directly from the urine enabled bacterial identification in polymicrobic samples. Additional putative pathogenic strains were observed in some culture negative samples. WGS directly on clinical samples can provide clinically relevant information and drastically reduce diagnostic time. This may prove very useful, but the need for data analysis is still a hurdle to clinical implementation. To overcome this problem a publicly available bioinformatics tool was developed in this study.
U2 - 10.1128/JCM.02452-13
DO - 10.1128/JCM.02452-13
M3 - Journal article
C2 - 24172157
SN - 0095-1137
VL - 52
SP - 139
EP - 146
JO - Journal of Clinical Microbiology
JF - Journal of Clinical Microbiology
IS - 1
ER -