TY - JOUR
T1 - Rapid and Simultaneous Determination of 238Pu, 239Pu, 240Pu, and 241Pu in Samples with High-Level Uranium Using ICP-MS/MS and Extraction Chromatography
AU - Huang, Zhao
AU - Hou, Xiaolin
AU - Zhao, Xue
PY - 2023
Y1 - 2023
N2 - As the most important plutonium isotopes, 238Pu, 239Pu, 240Pu, and 241Pu are normally measured by two to three techniques, which are tedious, time-consuming, and not suitable for rapid analysis in emergency situations. Recently, ICP-MS has become a competitive technique for the rapid measurement of 239Pu, 240Pu, and 241Pu. However, ICP-MS is difficult to measure 238Pu due to the serious isobaric interference of 238U. This work reports a rapid analytical method to solve this problem for the simultaneous determination of 238Pu, 239Pu, 240Pu, and 241Pu using triple-quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS) combined with chemical separation. Chemical separation achieved a high decontamination factor of 2.12 × 109 for the most critical interfering element, uranium, by using two sequential TK200 columns. The interferences of 238U1H+ and 238U+ were effectively eliminated by using 12 mL/min He-6 mL/min NH3 as the reaction gases in the octupole collision/reaction cell in ICP-MS/MS. Combined with chemical separation, the overall elimination efficiency of 238U1H+ reached 3.6 × 1017, which is 105 times better than the reported method. With the high 238U+ elimination efficiency of 1.12 × 104 in the ICP-MS/MS measurement, the overall removal efficiency of 238U+ reached 1013, guaranteeing accurate determination of femtogram-level 238Pu as well as 239Pu, 240Pu, and 241Pu in the samples containing milligram-level 238U. The detection time is reduced to minutes, well fulfilling the requirement of rapid analysis. This method is validated by analyzing the standard reference material and the spiked samples.
AB - As the most important plutonium isotopes, 238Pu, 239Pu, 240Pu, and 241Pu are normally measured by two to three techniques, which are tedious, time-consuming, and not suitable for rapid analysis in emergency situations. Recently, ICP-MS has become a competitive technique for the rapid measurement of 239Pu, 240Pu, and 241Pu. However, ICP-MS is difficult to measure 238Pu due to the serious isobaric interference of 238U. This work reports a rapid analytical method to solve this problem for the simultaneous determination of 238Pu, 239Pu, 240Pu, and 241Pu using triple-quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS) combined with chemical separation. Chemical separation achieved a high decontamination factor of 2.12 × 109 for the most critical interfering element, uranium, by using two sequential TK200 columns. The interferences of 238U1H+ and 238U+ were effectively eliminated by using 12 mL/min He-6 mL/min NH3 as the reaction gases in the octupole collision/reaction cell in ICP-MS/MS. Combined with chemical separation, the overall elimination efficiency of 238U1H+ reached 3.6 × 1017, which is 105 times better than the reported method. With the high 238U+ elimination efficiency of 1.12 × 104 in the ICP-MS/MS measurement, the overall removal efficiency of 238U+ reached 1013, guaranteeing accurate determination of femtogram-level 238Pu as well as 239Pu, 240Pu, and 241Pu in the samples containing milligram-level 238U. The detection time is reduced to minutes, well fulfilling the requirement of rapid analysis. This method is validated by analyzing the standard reference material and the spiked samples.
U2 - 10.1021/acs.analchem.3c02526
DO - 10.1021/acs.analchem.3c02526
M3 - Journal article
C2 - 37590167
SN - 0974-7419
VL - 95
SP - 12931
EP - 12939
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 34
ER -