Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers

Søren Michael Mørk Friis, Karsten Rottwitt, C. J. McKinstrie

    Research output: Contribution to journalJournal articleResearchpeer-review

    481 Downloads (Pure)


    We present a semi-classical approach for predicting the quantum noise properties of fiber optical parametric amplifiers. The unavoidable contributors of noise, vacuum fluctuations, loss-induced noise, and spontaneous Raman scattering, are included in the analysis of both phase-insensitive and phase-sensitive amplifiers. We show that the model agrees with earlier fully quantum approaches in the linear gain regime, whereas in the saturated gain regime, in which the classical equations are valid, we predict that the amplifier increases the signal-to-noise ratio by generating an amplitude-squeezed state of light. Also, in the same process, we analyze the quantum noise properties of the pump, which is difficult using standard quantum approaches, and we discover that the pump displays complicated dynamics in both the linear and the nonlinear gain regimes.
    Original languageEnglish
    JournalOptics Express
    Issue number24
    Pages (from-to)29320-29331
    Publication statusPublished - 2013

    Bibliographical note

    This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29320. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.


    Dive into the research topics of 'Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers'. Together they form a unique fingerprint.

    Cite this