Radiative MRI Coil Design Using Parasitic Scatterers: MRI Yagi

Conventionally, radiofrequency (RF) coils used for magnetic resonance imaging (MRI) are electrically small and designed for nearfield operation. Therefore, existing antenna design techniques are mostly irrelevant for RF coils. However, the use of higher frequencies in ultrahigh field (UHF) MRI allows for antenna design techniques to be adapted to RF coil designs. This study proposes the use of parasitic scatterers to improve the performance of an existing 7T MRI coil called the single-sided adapted dipole (SSAD) antenna. The results reveal that scatterers arranged in a Yagi fashion can be applied to reduce local specific absorption rate (SAR) maxima of a reference SSAD by 40% with only a 6% decrease in the propagated B1+ field at the tissue depth of 15 cm. The higher directivity of the proposed design also decreasing the coupling with additional elements, making this antenna suitable for use in high density arrays. These findings show the potential of parasitic scatterers as an effective method to improve the performance of existing radiative MRI coils.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Center for Hyperpolarization in Magnetic Resonance, Center for Magnetic Resonance, Lund University, Lite-On Mobile Mechanical AB
Contributors: Sanchez-Heredia, J. D., Avendal, J., Bibic, A., Lau, B. K.
Pages: 1570 - 1575
Publication date: 19 Jan 2018
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Antennas and Propagation
Volume: 66
Issue number: 3
ISSN (Print): 0018-926X
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 5.47 SJR 1.507 SNIP 2.594
Web of Science (2018): Indexed yes
Original language: English
Keywords: Antenna arrays, Dipole antennas, Electromagnetic propagation in absorbing media, Magnetic resonance imaging, Radio frequency, Specific absorption rate, Substrates, Yagi-Uda antennas
Electronic versions:
08265208.pdf
DOIs:
10.1109/TAP.2018.2794400
Source: Scopus
Source-ID: 85040951559
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review