TY - JOUR
T1 - Radiation hardening revisited: Role of intracascade clustering
AU - Singh, B.N.
AU - Foreman, A.J.E.
AU - Trinkaus, H.
PY - 1997
Y1 - 1997
N2 - Experimental observations related to the initiation of plastic deformation in metals and alloys irradiated with fission neutrons have been analyzed. The experimental results, showing irradiation-induced increase in the upper yield stress followed by a yield drop and plastic instability, cannot be explained in terms of conventional dispersed-barrier hardening because (a) the grown-in dislocations are not free, and (b) irradiation-induced defect clusters are not rigid indestructible Orowan obstacles. A new model called 'cascade-induced source hardening' is presented where glissile loops produced directly in cascades are envisaged to decorate the grown-in dislocations so that they cannot act as dislocation sources. The upper yield stress is related to the breakaway stress which is necessary to pull the dislocation away from the clusters/loops decorating it. The magnitude of the breakaway stress has been estimated and is found to be in good agreement with the measured increase in the initial yield stress in neutron irradiated copper. (C) 1997 Elsevier Science B.V.
AB - Experimental observations related to the initiation of plastic deformation in metals and alloys irradiated with fission neutrons have been analyzed. The experimental results, showing irradiation-induced increase in the upper yield stress followed by a yield drop and plastic instability, cannot be explained in terms of conventional dispersed-barrier hardening because (a) the grown-in dislocations are not free, and (b) irradiation-induced defect clusters are not rigid indestructible Orowan obstacles. A new model called 'cascade-induced source hardening' is presented where glissile loops produced directly in cascades are envisaged to decorate the grown-in dislocations so that they cannot act as dislocation sources. The upper yield stress is related to the breakaway stress which is necessary to pull the dislocation away from the clusters/loops decorating it. The magnitude of the breakaway stress has been estimated and is found to be in good agreement with the measured increase in the initial yield stress in neutron irradiated copper. (C) 1997 Elsevier Science B.V.
KW - Industrielle materialer
U2 - 10.1016/S0022-3115(97)00231-6
DO - 10.1016/S0022-3115(97)00231-6
M3 - Journal article
SN - 0022-3115
VL - 249
SP - 103
EP - 115
JO - Journal of Nuclear Materials
JF - Journal of Nuclear Materials
IS - 2-3
ER -